Journal of Spine Practice

ISSN: 2789-9462

Leading research in all spine subspecialties focusing on orthopaedic spine, neurosurgery, radiology, and pain management.

Comparative Efficacy of Bone Graft Materials in Transforaminal Lumbar Interbody Fusion: A Systematic Review and Meta-Analysis

Published date: Jul 31 2025

Journal Title: Journal of Spine Practice

Issue title: Journal of Spine Practice (JSP): Volume 4, Issue 3

Pages: 88 - 103

DOI: 10.18502/jsp.v4i3.17917

Authors:

Sami Al EissaSaleissa@yahoo.comOrthopaedics Surgery Department, King Abdulaziz Medical City, Riyadh

Fahad Al HelalAlhelalf.MD@gmail.comOrthopaedics Surgery Department, King Abdulaziz Medical City, Riyadh

Majed AbaalkhailAbaalkhail.majed@gmail.comOrthopaedics Surgery Department, King Abdulaziz Medical City, Riyadh

Abdullah Al ShehriAlshehri.abdullah@live.comOrthopaedics Surgery Department, King Abdulaziz Medical City, Riyadh

Raed Al MousaRaid.m.m@hotmail.comOrthopaedics Surgery Department, King Abdulaziz Medical City, Riyadh

Abdullah Bin ShabibBinshabibab@gmail.comOrthopaedics Surgery Department, King Abdulaziz Medical City, Riyadh

Hussam Al AngariHussam.20@hotmail.comOrthopaedics Surgery Department, King Abdulaziz Medical City, Riyadh

Abdulrahman M. AlJahanijohani.abdul@gmail.comOrthopaedics Surgery Department, King Abdulaziz Medical City, Riyadh

Dana W. AlDughimandanaaldughiman@gmail.comCollege of Medicine, King Saud Bin Abdulaziz University for Health and Sciences, Riyadh

Abstract:

Introduction
Transforaminal lumbar interbody fusion (TLIF) is a widely used surgical technique for treating several spinal pathologies. While various bone graft materials (autograft, allograft, demineralized bone matrix) and cage materials (PEEK, titanium) are utilized in TLIF surgeries, there is a need to compare their effectiveness and safety to guide optimal material selection.

Aim
This study aims to compare the efficacy and safety of different bone graft materials used in TLIF surgeries by analyzing fusion rates, clinical outcomes, and complication rates across various studies.

Methods
A systematic search was conducted on PubMed and Google Scholar for studies related to TLIF and bone graft materials up to December 2023. Inclusion criteria were randomized controlled trials (RCTs) and prospective and retrospective cohort studies that reported quantitative outcomes like fusion rates and clinical improvement with a minimum post-operative follow-up of one year. Data from 11 studies were extracted and analyzed.

Results
This review included 11 studies with a total of 986 observations and 878 fusion events. The overall fusion rate was 87% (95% CI: 79%-94%), with significant heterogeneity among studies (I² = 92%). Autografts showed the highest fusion rate at 94% (95% CI: 90%-98%), with no heterogeneity (I² = 0%). Polyetheretherketone (PEEK) cages demonstrated a fusion rate of 90% (95% CI: 83%-97%), with moderate heterogeneity (I² = 80.6%). Allografts had a fusion rate of 76% (95% CI: 54%-98%), with high heterogeneity (I² = 86.7%). Titanium cages had a fusion rate of 87% (95% CI: 75%-99%), with moderate heterogeneity (I² = 79.9%). Visual Analogue Scale (VAS) scores for back pain in Heinz et al. (2017) decreased from 7.47 to 3.08 in Group A and from 6.78 to 3.17 in Group B at 12 months post-op. The overall Oswestry Disability Index (ODI) scores improved from pre-operative values of 53.0 to post-operative values of 22.3 in Li et al. (2020).

Conclusions
Autografts remain the gold standard for TLIF due to their high fusion rates, but synthetic materials like PEEK and titanium are effective alternatives with comparable fusion success and fewer complications related to graft harvesting. Continued research and innovation in developing new graft materials could enhance treatment outcomes in spinal surgery.

Keywords: allografts, autografts, bone grafts, lumbar vertebrae, spinal fusion

References:

[1] Uçar BY, Özcan Ç, Polat Ö, Aman T. Transforaminal Lumbar Interbody Fusion For Lumbar Degenerative Disease: Patient Selection And Perspectives. Orthop Res Rev. 2019 Nov;11:183–9. https://doi.org/10.2147/ORR.S204297 PMID:31807090

[2] Prabhu MC, Jacob KC, Patel MR, Pawlowski H, Vanjani NN, Singh K. History and Evolution of the Minimally Invasive Transforaminal Lumbar Interbody Fusion. Neurospine. 2022 Sep;19(3):479–91. https://doi.org/10.14245/ns.2244122.061 PMID:36203277

[3] Jain Y, Lanjewar R, Lamture Y, Bawiskar D. Evaluation of Different Approaches for Pain Management in Postoperative General Surgery Patients: A Comprehensive Review. Cureus. 2023 Nov;15(11):e48573. https://doi.org/10.7759/cureus.48573 PMID:38073977

[4] Ferreira ML, de Luca K, Haile LM, Steinmetz JD, Culbreth GT, Cross M, et al.; GBD 2021 Low Back Pain Collaborators. Global, regional, and national burden of low back pain, 1990-2020, its attributable risk factors, and projections to 2050: a systematic analysis of the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023 May;5(6):e316–29. https://doi.org/10.1016/S2665-9913(23)00098-X PMID:37273833

[5] Edmiston CE Jr, Leaper DJ, Chitnis AS, Holy CE, Chen BP. Risk and economic burden of surgical site infection following spinal fusion in adults. Infect Control Hosp Epidemiol. 2023 Jan;44(1):88– 95. https://doi.org/10.1017/ice.2022.32 PMID:35322778

[6] Buser Z, Brodke DS, Youssef JA, Rometsch E, Park JB, Yoon ST, et al. Allograft Versus Demineralized Bone Matrix in Instrumented and Noninstrumented Lumbar Fusion: A Systematic Review. Global Spine J. 2018 Jun;8(4):396– 412. https://doi.org/10.1177/2192568217735342 PMID:29977726

[7] Lee S, Ham D-W, Kwon O, Park J-H, Yoon Y, Kim H-J. Comparison of Fusion Rates among Various Demineralized Bone Matrices in Posterior Lumbar Interbody Fusion. Medicina. 2024;60(2):265. https://doi.org/10.3390/medicina60020265.

[8] Haws BE, Khechen B, Patel DV, Yoo JS, Guntin JA, Cardinal KL, et al. Impact of Iliac Crest Bone Grafting on Postoperative Outcomes and Complication Rates Following Minimally Invasive Transforaminal Lumbar Interbody Fusion. Neurospine. 2019 Dec;16(4):772– 9. https://doi.org/10.14245/ns.1938006.003 PMID:31284335

[9] Saban KL, Penckofer SM, Androwich I, Bryant FB. Health-related quality of life of patients following selected types of lumbar spinal surgery: a pilot study. Health Qual Life Outcomes. 2007 Dec;5(1):71.https://doi.org/10.1186/1477-7525- 5-71 PMID:18163905

[10] Boonsirikamchai W, Wilartratsami S, Ruangchainikom M, Korwutthikulrangsri E, Tongsai S, Luksanapruksa P. Pseudarthrosis risk factors in lumbar fusion: a systematic review and meta-analysis. BMC Musculoskelet Disord. 2024 Jun;25(1):433. https://doi.org/10.1186/s12891- 024-07531-w PMID:38831392

[11] Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021 Mar;372(71):n71. https://doi.org/10.1136/bmj.n71 PMID:33782057

[12] vonderHoeh NH, Voelker A, Heyde CE. Results of lumbar spondylodeses using different bone grafting materials after transforaminal lumbar interbody fusion (TLIF). Eur Spine J. 2017 Nov;26(11):2835– 42. https://doi.org/10.1007/s00586-017-5145-0 PMID:28547573

[13] Lv C, Li X, Zhang H, Lv J, Zhang H. Comparative effectiveness of two different interbody fusion methods for transforaminal lumbar interbody fusion: cage versus morselized impacted bone grafts. BMC Musculoskelet Disord. 2015 Aug;16(1):207. https://doi.org/10.1186/s12891- 015-0675-2 PMID:26285579

[14] Cutler AR, Siddiqui S, Mohan AL, Hillard VH, Cerabona F, Das K. Comparison of polyetheretherketone cages with femoral cortical bone allograft as a single-piece interbody spacer in transforaminal lumbar interbody fusion. J Neurosurg Spine. 2006 Dec;5(6):534– 9. https://doi.org/10.3171/spi.2006.5.6.534 PMID:17176018

[15] Mura PP, Costaglioli M, Piredda M, Caboni S, Casula S. TLIF for symptomatic disc degeneration: a retrospective study of 100 patients. Eur Spine J. 2011;20(Suppl 1):S57-60. https://doi.org/10.1007/s00586-011-1761-2..

[16] Nemoto O, Asazuma T, Yato Y, Imabayashi H, Yasuoka H, Fujikawa A. Comparison of fusion rates following transforaminal lumbar interbody fusion using polyetheretherketone cages or titanium cages with transpedicular instrumentation. Eur Spine J. 2014 Oct;23(10):2150–5. https://doi.org/10.1007/s00586-014-3466-9 PMID:25015180

[17] Rickert M, Fleege C, Tarhan T, Schreiner S, Makowski MR, Rauschmann M, Arabmotlagh M. Transforaminal lumbar interbody fusion using polyetheretherketone oblique cages with and without a titanium coating: a randomised clinical pilot study. Bone Joint J. 2017;99b(10):1366-72. https://doi.org/10.1302/0301-620X.99B10.BJJ- 2016-1292.R2.

[18] Canseco JA, Karamian BA, DiMaria SL, Patel PD, Divi SN, Chang M, et al. Static Versus Expandable Polyether Ether Ketone (PEEK) Interbody Cages: A Comparison of One-Year Clinical and Radiographic Outcomes for One- Level Transforaminal Lumbar Interbody Fusion. World Neurosurg. 2021 Aug;152:e492–501. https://doi.org/10.1016/j.wneu.2021.05.128 PMID:34098137

[19] Li Y, Dai Y, Wang B, Li L, Li P, Xu J, et al. Full-Endoscopic Posterior Lumbar Interbody Fusion Via an Interlaminar Approach Versus Minimally Invasive Transforaminal Lumbar Interbody Fusion: A Preliminary Retrospective Study. World Neurosurg. 2020 Dec;144:e475– 82. https://doi.org/10.1016/j.wneu.2020.08.204 PMID:32891847

[20] Tanida S, Fujibayashi S, Otsuki B, Masamoto K, Takahashi Y, Nakayama T, et al. Vertebral Endplate Cyst as a Predictor of Nonunion After Lumbar Interbody Fusion: Comparison of Titanium and Polyetheretherketone Cages. Spine. 2016 Oct;41(20):E1216–22. https://doi.org/10.1097/BRS.0000000000001605 PMID:27054449

[21] Feng L, Liang J, Wang N, Zhang Q. Systemic Inflammatory Markers and Clinical Outcomes of Open versus Biportal Endoscopic Transforaminal Lumbar Interbody Fusion. Ther Clin Risk Manag. 2024 May;20:249– 59. https://doi.org/10.2147/TCRM.S447394 PMID:38736989

[22] Abou-Madawi AM, Ali SH, Abdelmonem AM. Local Autograft Versus Iliac Crest Bone Graft PSF-Augmented TLIF in Low-Grade Isthmic and Degenerative Lumbar Spondylolisthesis. Global Spine J. 2022 Jan;12(1):70–8. https://doi.org/10.1177/2192568220946319 PMID:32914652

[23] Whang PG, Wang JC. Bone graft substitutes for spinal fusion. Spine J. 2003;3(2):155–65. https://doi.org/10.1016/S1529-9430(02)00539-9 PMID:14589231

[24] Lombardo JA, Russell N, He J, Larson MJ, Walsh WR, Mundis GM Jr, et al. Autograft Cellular Contribution to Spinal Fusion and Effects of Intraoperative Storage Conditions. Spine. 2023 Aug;48(16):1181–9. https://doi.org/10.1097/BRS.0000000000004688 PMID:37078877

[25] Burg KJ, Shalaby SW. PES and PEEK. In: Buschow KH, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S, et al., editors. Encyclopedia of Materials: Science and Technology. Oxford: Elsevier; 2001. pp. 6837–9. https://doi.org/10.1016/B0-08-043152-6/01212- 2.

[26] Wei Z, Zhang Z, Zhu W, Weng X. Polyetheretherketone development in bone tissue engineering and orthopedic surgery. Front Bioeng Biotechnol. 2023 Jun;11:1207277. https://doi.org/10.3389/fbioe.2023.1207277 PMID:37456732

[27] Ni J, Zheng Y, Liu N, Wang X, Fang X, Phukan R, et al. Radiological evaluation of anterior lumbar fusion using PEEK cages with adjacent vertebral autograft in spinal deformity long fusion surgeries. Eur Spine J. 2015 Apr;24(4):791– 9. https://doi.org/10.1007/s00586-014-3745-5 PMID:25618451

[28] Girasole G, Muro G, Mintz A, Chertoff J. Transforaminal lumbar interbody fusion rates in patients using a novel titanium implant and demineralized cancellous allograft bone sponge. Int J Spine Surg. 2013 Dec;7(1):e95– 100. https://doi.org/10.1016/j.ijsp.2013.08.001 PMID:25580378

[29] Cofano F, Di Perna G, Monticelli M, Marengo N, Ajello M, Mammi M, et al. Carbon fiber reinforced vs titanium implants for fixation in spinal metastases: A comparative clinical study about safety and effectiveness of the new “carbonstrategy”. J Clin Neurosci. 2020 May;75:106– 11. https://doi.org/10.1016/j.jocn.2020.03.013 PMID:32173153

[30] Virdi G, Murray O. Patient safety in spinal surgery: from scene of injury to discharge. Orthop Trauma. 2015;29(6):393–8. https://doi.org/10.1016/j.mporth.2015.09.009.

[31] Wang W, Yeung KW. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact Mater. 2017 Jun;2(4):224–47. https://doi.org/10.1016/j.bioactmat.2017.05.007 PMID:29744432

[32] Munakata M, Kataoka Y, Yamaguchi K, Sanda M. Risk Factors for Early Implant Failure and Selection of Bone Grafting Materials for Various Bone Augmentation Procedures: A Narrative Review. Bioengineering (Basel). 2024 Feb;11(2):192. https://doi.org/10.3390/bioengineering11020192 PMID:38391678

[33] Vaz K, Verma K, Protopsaltis T, Schwab F, Lonner B, Errico T. Bone grafting options for lumbar spine surgery: a review examining clinical efficacy and complications. SAS J. 2010 Sep;4(3):75– 86. https://doi.org/10.1016/j.esas.2010.01.004 PMID:25802654

[34] Carlisle ER, Fischgrund JS. CHAPTER 27 - Bone Graft and Fusion Enhancement. In: Errico TJ, Lonner BS, Moulton AW, editors. Surgical Management of Spinal Deformities. Philadelphia: W.B. Saunders; 2009. pp. 433– 48. https://doi.org/10.1016/B978-141603372- 1.50030-5.

[35] Greene AC, Hsu WK. Orthobiologics in minimally invasive lumbar fusion. J Spine Surg. 2019 Jun;5(S1 Suppl 1):S11– 8. https://doi.org/10.21037/jss.2019.04.15 PMID:31380488

[36] Hurwitz EL, Randhawa K, Yu H, Côté P, Haldeman S. The Global Spine Care Initiative: a summary of the global burden of low back and neck pain studies. Eur Spine J. 2018 Sep;27(S6 Suppl 6):796–801. https://doi.org/10.1007/s00586-017-5432-9 PMID:29480409