Journal of Ophthalmic and Vision Research

ISSN: 2008-322X

The latest research in clinical ophthalmology and vision science

Intracellular Signaling Pathways and Their Potential Targeting for Treatment of Ocular Posterior Segment Fibrosis

Published date: May 21 2025

Journal Title: Journal of Ophthalmic and Vision Research

Issue title: ‎Volume 20 - 2025

Pages: 1 - 20

DOI: 10.18502/jovr.v20.16966

Authors:

Tahmineh Motevasselit.motevasseli@gmail.comOphthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran

Aryan Serajaryan.ser@gmail.comOphthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran

Narsis Daftariannardaftarian@gmail.comExperimental Medicine, Department of Medicine, The University of British Columbia Faculty of Medicine, Vancouver, British Columbia

Mozhgan Rezaei Kanavirezaeikanavi@gmail.comOcular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran

Hamid Ahmadiehhahmadieh@hotmail.comOphthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran

Nader Sheibaninsheibanikar@wisc.eduDepartment of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI

Abstract:

Treatment of posterior segment fibrosis is an unmet challenge in ophthalmology. Fibrotic responses complicate the pathology and treatment of age-related macular degeneration, diabetic retinopathy, retinal detachment, and other retinal diseases resulting in severe visual impairment. There is a lack of clear understanding of the exact mechanisms and different cell types taking part in retinal and preretinal fibrosis. This review discusses the current knowledge regarding various aspects of the intracellular signaling pathways impacting vitreoretinal fibrotic processes, focusing on the cellular and molecular mechanisms, summarizing the results of preclinical and clinical studies, and suggesting strategies for future investigations.

Keywords: Age-related Macular Degeneration, Diabetic Retinopathy, Ocular Fibrosis, Proliferative Vitreoretinopathy, TGFβ Signaling

References:

1. Greaves NS, Ashcroft KJ, Baguneid M, Bayat A. Current understanding of molecular and cellular mechanisms in fibroplasia and angiogenesis during acute wound healing. J Dermatol Sci 2013;72:206–217.

2. Friedlander M. Fibrosis and diseases of the eye. J Clin Invest 2007;117:576–586.

3. Antar SA, Ashour NA, Marawan ME, Al-Karmalawy AA. Fibrosis: Types, effects, markers, mechanisms for disease progression, and its relation with oxidative stress, immunity, and inflammation. Int J Mol Sci 2023;24:4004.

4. Jaffe GJ, Martin DF, Toth CA, Daniel E, Maguire MG, Ying GS, et al.; Comparison of Age-related Macular Degeneration Treatments Trials Research Group. Macular morphology and visual acuity in the comparison of age-related macular degeneration treatments trials. Ophthalmology 2013;120:1860–1870.

5. Saika S, Yamanaka O, Sumioka T, Miyamoto T, Miyazaki K, Okada Y, et al. Fibrotic disorders in the eye: Targets of gene therapy. Prog Retin Eye Res 2008;27:177–196.

6. Abu El-Asrar AM, Nawaz MI, Ahmad A, Siddiquei MM, Allegaert E, Gikandi PW, et al. CD146/Soluble CD146 pathway is a novel biomarker of angiogenesis and inflammation in proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 2021;62:32.

7. Chaudhary R, Scott RA, Wallace G, Berry M, Logan A, Blanch RJ. Inflammatory and fibrogenic factors in proliferative vitreoretinopathy development. Transl Vis Sci Technol 2020;9:23.

8. Amarnani D, Machuca-Parra AI, Wong LL, Marko CK, Stefater JA, Stryjewski TP, et al. Effect of methotrexate on an in vitro patient-derived model of proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 2017;58:3940–3949.

9. Farnoodian M, Halbach C, Slinger C, Pattnaik BR, Sorenson CM, Sheibani N. High glucose promotes the migration of retinal pigment epithelial cells through increased oxidative stress and PEDF expression. Am J Physiol Cell Physiol 2016;311:C418–C436.

10. Frisina R, Tessarolo F, Marchesoni I, Piccoli F, Bonomi E, Caciagli P, et al. Microscopic observation of proliferative membranes in fibrocontractive retinal disorders. J Ophthalmol 2019;2019:9647947.

11. Ishikawa K, Sreekumar PG, Spee C, Nazari H, Zhu D, Kannan R, et al. αB-crystallin regulates subretinal fibrosis by modulation of epithelial-mesenchymal transition. Am J Pathol 2016;186:859–873.

12. Boris H. Myofibroblasts. Exp Eye Res 2016;142:56–70.

13. Sun JX, Chang TF, Li MH, Sun LJ, Yan XC, Yang ZY, et al. SNAI1, an endothelial-mesenchymal transition transcription factor, promotes the early phase of ocular neovascularization. Angiogenesis 2018;21:635–652.

14. Kramann R, Schneider RK, DiRocco DP, Machado F, Fleig S, Bondzie PA, et al. Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 2015;16:51–66.

15. Szczepan M, Llorián-Salvador M, Chen M, Xu H. Immune cells in subretinal wound healing and fibrosis. Front Cell Neurosci 2022;16:916719.

16. Espinosa-Heidmann DG, Reinoso MA, Pina Y, Csaky KG, Caicedo A, Cousins SW. Quantitative enumeration of vascular smooth muscle cells and endothelial cells derived from bone marrow precursors in experimental choroidal neovascularization. Exp Eye Res 2005;80:369–378.

17. Wang S, Meng XM, Ng YY, Ma FY, Zhou S, Zhang Y, et al. TGF-β/Smad3 signalling regulates the transition of bone marrow-derived macrophages into myofibroblasts during tissue fibrosis. Oncotarget 2016;7:8809–8822.

18. Luo X, Yang S, Liang J, Zhai Y, Shen M, Sun J, et al. Choroidal pericytes promote subretinal fibrosis after experimental photocoagulation. Dis Model Mech 2018;11:dmm032060.

19. Saika S, Yamanaka O, Okada Y, Tanaka S, Miyamoto T, Sumioka T, et al. TGF beta in fibroproliferative diseases in the eye. Front Biosci 2009;1:376–390.

20. Finnson KW, McLean S, Di Guglielmo GM, Philip A. Dynamics of transforming growth factor beta signaling in wound healing and scarring. Adv Wound Care 2013;2:195–214.

21. Tzavlaki K, Moustakas A. TGF-β signaling. Biomolecules 2020;10:487.

22. Yokoyama K, Kimoto K, Itoh Y, Nakatsuka K, Matsuo N, Yoshioka H, et al. The PI3K/Akt pathway mediates the expression of type I collagen induced by TGF-β2 in human retinal pigment epithelial cells. Graefes Arch Clin Exp Ophthalmol 2012;250:15–23.

23. Mallone F, Costi R, Marenco M, Plateroti R, Minni A, Attanasio G, et al. Understanding drivers of ocular fibrosis: current and future therapeutic perspectives. Int J Mol Sci 2021;22:11748.

24. Daley R, Maddipatla V, Ghosh S, Chowdhury O, Hose S, Zigler JS Jr, et al. Aberrant Akt2 signaling in the RPE may contribute to retinal fibrosis process in diabetic retinopathy. Cell Death Discov 2023;9:243.

25. Saika S, Ikeda K, Yamanaka O, Flanders KC, Okada Y, Miyamoto T, et al. Loss of tumor necrosis factor alpha potentiates transforming growth factor beta-mediated pathogenic tissue response during wound healing. Am J Pathol 2006;168:1848–1860.

26. Wang Y, Chang T, Wu T, Ye W, Wang Y, Dou G, et al. Connective tissue growth factor promotes retinal pigment epithelium mesenchymal transition via the PI3K/AKT signaling pathway. Mol Med Rep 2021;23:389.

27. Zhang W, Li J. Yes-associated protein is essential for proliferative vitreoretinopathy development via the epithelial-mesenchymal transition in retinal pigment epithelial fibrosis. J Cell Mol Med 2021;25:10213–10223.

28. Zhang W, Kong Y. YAP is essential for TGF-β-induced retinal fibrosis in diabetic rats via promoting the fibrogenic activity of Müller cells. J Cell Mol Med 2020;24:12390–12400.

29. Zhang W, Han H. Targeting matrix stiffness-induced activation of retinal pigment epithelial cells through the RhoA/YAP pathway ameliorates proliferative vitreoretinopathy. Exp Eye Res 2021;209:108677.

30. Zhang H, Yang Y, Takeda A, Yoshimura T, Oshima Y, Sonoda KH, et al. A novel platelet-activating factor receptor antagonist inhibits choroidal neovascularization and subretinal fibrosis. PLoS One 2013;8:e68173.

31. Zhang H, Shang Q, An J, Wang C, Ma J. Crocetin inhibits PDGF-BB-induced proliferation and migration of retinal pigment epithelial cells. Eur J Pharmacol 2019;842:329–337.

32. Liu Y, Noda K, Murata M, Wu D, Kanda A, Ishida S. Blockade of platelet-derived growth factor signaling inhibits choroidal neovascularization and subretinal fibrosis in mice. J Clin Med 2020;9:2242.

33. Zhang W, Li J. EGF receptor signaling modulates YAP activation and promotes experimental proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 2022;63:24.

34. Yan F, Hui Y. Epidermal growth factor receptor exists in the early stage of proliferative vitreoretinopathy. Can J Ophthalmol 2012;47:e24–e25.

35. Kim SJ, Kim YS, Kim JH, Jang HY, Ly DD, Das R, et al. Activation of ERK1/2-mTORC1-NOX4 mediates TGF- β1-induced epithelial-mesenchymal transition and fibrosis in retinal pigment epithelial cells. Biochem Biophys Res Commun 2020;529:747–752.

36. Kimoto K, Nakatsuka K, Matsuo N, Yoshioka H. p38 MAPK mediates the expression of type I collagen induced by TGF-beta 2 in human retinal pigment epithelial cells ARPE-19. Invest Ophthalmol Vis Sci 2004;45:2431–2437.

37. Kobayashi M, Tokuda K, Kobayashi Y, Yamashiro C, Uchi SH, Hatano M, et al. Suppression of epithelialmesenchymal transition in retinal pigment epithelial cells by an MRTF-A inhibitor. Invest Ophthalmol Vis Sci 2019;60:528–537.

38. Wu J, Sheibani N. Modulation of VE-cadherin and PECAM-1 mediated cell-cell adhesions by mitogen-activated protein kinases. J Cell Biochem 2003;90:121–137.

39. Itoh Y, Kimoto K, Imaizumi M, Nakatsuka K. Inhibition of RhoA/Rho-kinase pathway suppresses the expression of type I collagen induced by TGF-beta2 in human retinal pigment epithelial cells. Exp Eye Res 2007;84:464–472.

40. Shin ES, Huang Q, Gurel Z, Palenski TL, Zaitoun I, Sorenson CM, et al. STAT1-mediated Bim expression promotes the apoptosis of retinal pericytes under high glucose conditions. Cell Death Dis 2014;5:e986.

41. Li Y, Hu Q, Wang B. Effects of Apelin on the fibrosis of retinal tissues and Müller cells in diabetes retinopathy through the JAK2/STAT3 signalling pathway. Autoimmunity 2023;56:2259129.

42. Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, et al. Novel signal transduction pathway utilized by extracellular HSP70: Role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 2002;277:15028–15034.

43. Yang Y, Takeda A, Yoshimura T, Oshima Y, Sonoda KH, Ishibashi T. IL-10 is significantly involved in HSP70- regulation of experimental subretinal fibrosis. PLoS One 2013;8:e80288.

44. Grambergs R, Mondal K, Mandal N. Inflammatory ocular diseases and sphingolipid signaling. Adv Exp Med Biol 2019;1159:139–152.

45. Gomez-Mu noz A. The role of ceramide 1-phosphate in tumor cell survival and dissemination. Adv Cancer Res 2018;140:217–234.

46. Donati C, Cencetti F, Bernacchioni C, Vannuzzi V, Bruni P. Role of sphingosine 1-phosphate signalling in tissue fibrosis. Cell Signal 2021;78:109861.

47. Simón MV, Vera MS, Tenconi PE, Soto T, Prado Spalm FH, Torlaschi C, et al. Sphingosine-1-phosphate and ceramide- 1-phosphate promote migration, pro-inflammatory and profibrotic responses in retinal pigment epithelium cells. Exp Eye Res 2022;224:109222.

48. Sorenson CM, Farnoodian M, Wang S, Song YS, Darjatmoko SR, Polans AS, et al. Fingolimod (FTY720), a sphingosine-1-phosphate receptor agonist, mitigates choroidal endothelial proangiogenic properties and choroidal neovascularization. Cells 2022;11.

49. Yoshida S, Ishikawa K, Asato R, Arima M, Sassa Y, Yoshida A, et al. Increased expression of periostin in vitreous and fibrovascular membranes obtained from patients with proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 2011;52:5670–5678.

50. Ishikawa K, Yoshida S, Nakao S, Nakama T, Kita T, Asato R, et al. Periostin promotes the generation of fibrous membranes in proliferative vitreoretinopathy. FASEB J 2014;28:131–142.

51. Izumi-Nagai K, Nagai N, Ozawa Y, Mihara M, Ohsugi Y, Kurihara T, et al. Interleukin-6 receptormediated activation of signal transducer and activator of transcription-3 (STAT3) promotes choroidal neovascularization. Am J Pathol 2007;170:2149–2158.

52. Seddon JM, George S, Rosner B, Rifai N. Progression of age-related macular degeneration: Prospective assessment of C-reactive protein, interleukin 6, and other cardiovascular biomarkers. Arch Ophthalmol 2005;123:774–782.

53. Cui W, Zhang H, Liu ZL. Interleukin-6 receptor blockade suppresses subretinal fibrosis in a mouse model. Int J Ophthalmol 2014;7:194–197.

54. Sato K, Takeda A, Hasegawa E, Jo YJ, Arima M, Oshima Y, et al. Interleukin-6 plays a crucial role in the development of subretinal fibrosis in a mouse model. Immunol Med 2018;41:23–29.

55. Jiang Y, Lin X, Tang Z, Lee C, Tian G, Du Y, et al. Critical role of caveolin-1 in ocular neovascularization and multitargeted antiangiogenic effects of cavtratin via JNK. Proc Natl Acad Sci USA 2017;114:10737–10742.

56. Nagasaka Y, Kaneko H, Ye F, Kachi S, Asami T, Kato S, et al. Role of Caveolin-1 for blocking the epithelialmesenchymal transition in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 2017;58:221–229.

57. Shimizu H, Yamada K, Suzumura A, Kataoka K, Takayama K, Sugimoto M, et al. Caveolin-1 promotes cellular senescence in exchange for blocking subretinal fibrosis in age-related macular degeneration. Invest Ophthalmol Vis Sci 2020;61:21.

58. Wang H, Ramshekar A, Cung T, Wallace-Carrete C, Zaugg C, Nguyen J, et al. 7-ketocholesterol promotes retinal pigment epithelium senescence and fibrosis of choroidal neovascularization via IQGAP1 phosphorylationdependent signaling. Int J Mol Sci 2023;24:10276.

59. Wu D, Kanda A, Liu Y, Kase S, Noda K, Ishida S. Galectin- 1 promotes choroidal neovascularization and subretinal fibrosis mediated via epithelial-mesenchymal transition. FASEB J 2019;33:2498–2513.

60. Saika S, Yamanaka O, Nishikawa-Ishida I, Kitano A, Flanders KC, Okada Y, et al. Effect of Smad7 gene overexpression on transforming growth factor betainduced retinal pigment fibrosis in a proliferative vitreoretinopathy mouse model. Arch Ophthalmol 2007;125:647–654.

61. Saika S, Yamanaka O, Ikeda K, Kim-Mitsuyama S, Flanders KC, Yoo J, et al. Inhibition of p38MAP kinase suppresses fibrotic reaction of retinal pigment epithelial cells. Lab Invest 2005;85:838–850.

62. Chen Q, Jiang N, Zhang Y, Ye S, Liang X, Wang X, et al. Fenofibrate inhibits subretinal fibrosis through suppressing TGF-β-Smad2/3 signaling and Wnt signaling in neovascular age-related macular degeneration. Front Pharmacol 2020;11:580884.

63. Kobayashi Y, Tokuda K, Yamashiro C, Higashijima F, Yoshimoto T, Ota M, et al. Inhibition of epithelialmesenchymal transition in retinal pigment epithelial cells by a retinoic acid receptor-α agonist. Sci Rep 2021;11:11842.

64. Zhu J, Nguyen D, Ouyang H, Zhang XH, Chen XM, Zhang K. Inhibition of RhoA/Rho-kinase pathway suppresses the expression of extracellular matrix induced by CTGF or TGF-β in ARPE-19. Int J Ophthalmol 2013;6:8–14.

65. Bo Q, Shen M, Xiao M, Liang J, Zhai Y, Zhu H, et al. 3-methyladenine alleviates experimental subretinal fibrosis by inhibiting macrophages and M2 polarization through the PI3K/Akt pathway. J Ocul Pharmacol Ther 2020;36:618–628.

66. Fan J, Shen W, Lee SR, Mathai AE, Zhang R, Xu G, et al. Targeting the Notch and TGF-β signaling pathways to prevent retinal fibrosis in vitro and in vivo. Theranostics 2020;10:7956–7973.

67. Chen X, Xiao W, Liu X, Zeng M, Luo L, Wu M, et al. Blockade of Jagged/Notch pathway abrogates transforming growth factor β2-induced epithelial-mesenchymal transition in human retinal pigment epithelium cells. Curr Mol Med 2014;14:523–534.

68. Zhang J, Yuan G, Dong M, Zhang T, Hua G, Zhou Q, et al. Notch signaling modulates proliferative vitreoretinopathy via regulating retinal pigment epithelial-to-mesenchymal transition. Histochem Cell Biol 2017;147:367–375.

69. Bagheri A, Soheili ZS, Ahmadieh H, Samiei S, Sheibani N, Astaneh SD, et al. Simultaneous application of bevacizumab and anti-CTGF antibody effectively suppresses proangiogenic and profibrotic factors in human RPE cells. Mol Vis 2015;21:378–390.

70. Daftarian N, Rohani S, Kanavi MR, Suri F, Mirrahimi M, Hafezi-Moghadam A, et al. Effects of intravitreal connective tissue growth factor neutralizing antibody on choroidal neovascular membrane-associated subretinal fibrosis. Exp Eye Res 2019;184:286–295.

71. Daftarian N, Baigy O, Suri F, Kanavi MR, Balagholi S, Afsar Aski S, et al. Intravitreal connective tissue growth factor neutralizing antibody or bevacizumab alone or in combination for prevention of proliferative vitreoretinopathy in an experimental model. Exp Eye Res 2021;208:108622.

72. Presta M, Dell’Era P, Mitola S, Moroni E, Ronca R, Rusnati M. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 2005;16:159–178.

73. Matsuda Y, Nonaka Y, Futakawa S, Imai H, Akita K, Nishihata T, et al. Anti-angiogenic and anti-scarring dual action of an anti-fibroblast growth factor 2 aptamer in animal models of retinal disease. Mol Ther Nucleic Acids 2019;17:819–828.

74. Ye S, Chen Q, Jiang N, Liang X, Li J, Zong R, et al. PPARα-dependent effects of palmitoylethanolamide against retinal neovascularization and fibrosis. Invest Ophthalmol Vis Sci 2020;61:15.

75. Ma X, Takahashi Y, Wu W, Chen J, Dehdarani M, Liang W, et al. Soluble very low-density lipoprotein receptor (sVLDLR) inhibits fibrosis in neovascular age-related macular degeneration. FASEB J 2021;35:e22058.

76. Lu Y, Gu W, Ren Y, Feng J, Yang L, Jin J. Anti-fibrosis effect of nanoparticle-mediated delivery of plasminogen kringle 5. Discov Med 2017;23:343–351.

77. Zhang R, Liu Z, Zhang H, Zhang Y, Lin D. The COX-2-selective antagonist (NS-398) inhibits choroidal neovascularization and subretinal fibrosis. PLoS One 2016;11:e0146808.

78. Rezaei KA, Toma HS, Cai J, Penn JS, Sternberg P, Kim SJ. Reduced choroidal neovascular membrane formation in cyclooxygenase-2 null mice. Invest Ophthalmol Vis Sci 2011;52:701–707.

79. Yin Y, Liu S, Pu L, Luo J, Liu H, Wu W. Nintedanib prevents TGF-β2-induced epithelial-mesenchymal transition in retinal pigment epithelial cells. Biomed Pharmacother 2023;161:114543.

80. Chan CM, Chang HH, Wang VC, Huang CL, Hung CF. Inhibitory effects of resveratrol on PDGF-BB-induced retinal pigment epithelial cell migration via PDGFRβ, PI3K/Akt and MAPK pathways. PLoS One 2013;8:e56819.

81. Chen CL, Chen YH, Tai MC, Liang CM, Lu DW, Chen JT. Resveratrol inhibits transforming growth factor-β2- induced epithelial-to-mesenchymal transition in human retinal pigment epithelial cells by suppressing the Smad pathway. Drug Des Devel Ther 2017;11:163–173.

82. Ishikawa K, He S, Terasaki H, Nazari H, Zhang H, Spee C, et al. Resveratrol inhibits epithelial-mesenchymal transition of retinal pigment epithelium and development of proliferative vitreoretinopathy. Sci Rep 2015;5:16386.83. Subramani M, Ponnalagu M, Krishna L, Jeyabalan N, Chevour P, Sharma A, et al. Resveratrol reverses the adverse effects of bevacizumab on cultured ARPE-19 cells. Sci Rep 2017;7:12242.

84. He GH, Zhang W, Ma YX, Yang J, Chen L, Song J, et al. Mesenchymal stem cells-derived exosomes ameliorate blue light stimulation in retinal pigment epithelium cells and retinal laser injury by VEGF-dependent mechanism. Int J Ophthalmol 2018;11:559–566.

85. Nuzzi R, Caselgrandi P, Vercelli A. Effect of mesenchymal stem cell-derived exosomes on retinal injury: A review of current findings. Stem Cells Int 2020;2020:8883616.

86. Mathew B, Ravindran S, Liu X, Torres L, Chennakesavalu M, Huang CC, et al. Mesenchymal stem cell-derived extracellular vesicles and retinal ischemia-reperfusion. Biomaterials 2019;197:146–160.

87. Li D, Zhang J, Liu Z, Gong Y, Zheng Z. Human umbilical cord mesenchymal stem cell-derived exosomal miR-27b attenuates subretinal fibrosis via suppressing epithelialmesenchymal transition by targeting HOXC6. Stem Cell Res Ther 2021;12:24.

88. Liu Y, Kanda A, Wu D, Ishizuka ET, Kase S, Noda K, et al. Suppression of choroidal neovascularization and fibrosis by a novel RNAi therapeutic agent against (Pro)renin receptor. Mol Ther Nucleic Acids 2019;17:113–125.

89. Nalbant P, Chang YC, Birkenfeld J, Chang ZF, Bokoch GM. Guanine nucleotide exchange factor-H1 regulates cell migration via localized activation of RhoA at the leading edge. Mol Biol Cell 2009;20:4070–4082.

90. Mills C, Hemkemeyer SA, Alimajstorovic Z, Bowers C, Eskandarpour M, Greenwood J, et al. Therapeutic validation of GEF-H1 using a de novo designed inhibitor in models of retinal disease. Cells 2022;11:1733.

91. Nakama T, Yoshida S, Ishikawa K, Kobayashi Y, Zhou Y, Nakao S, et al. Inhibition of choroidal fibrovascular membrane formation by new class of RNA interference therapeutic agent targeting periostin. Gene Ther 2015;22:127–137.

92. Roychoudhury J, Herndon JM, Yin J, Apte RS, Ferguson TA. Targeting immune privilege to prevent pathogenic neovascularization. Invest Ophthalmol Vis Sci 2010;51:3560–3566.

93. Peng X, Xiao H, Tang M, Zhan Z, Yang Y, Sun L, et al. Mechanism of fibrosis inhibition in laser induced choroidal neovascularization by doxycycline. Exp Eye Res 2018;176:88–97.

94. Tanaka M, Kakihara S, Hirabayashi K, Imai A, Toriyama Y, Iesato Y, et al. Adrenomedullin-receptor activitymodifying protein 2 system ameliorates subretinal fibrosis by suppressing epithelial-mesenchymal transition in agerelated macular degeneration. Am J Pathol 2021;191:652–668.

95. Xiao Y, Choi KS, Warther D, Huffman K, Landeros S, Freeman WR, et al. A sustained dual drug delivery system for proliferative vitreoretinopathy. Drug Deliv 2020;27:1461–1473.

96. Hou H, Huffman K, Rios S, Freeman WR, Sailor MJ, Cheng L. A novel approach of daunorubicin application on formation of proliferative retinopathy using a porous silicon controlled delivery system: Pharmacodynamics. Invest Ophthalmol Vis Sci 2015;56:2755–2763.

97. He S, Barron E, Ishikawa K, Nazari Khanamiri H, Spee C, Zhou P, et al. Inhibition of DNA methylation and methyl-CpG-binding protein 2 suppresses RPE transdifferentiation: Relevance to proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 2015;56:5579–5589.

98. Xiao W, Chen X, Liu X, Luo L, Ye S, Liu Y. Trichostatin A, a histone deacetylase inhibitor, suppresses proliferation and epithelial-mesenchymal transition in retinal pigment epithelium cells. J Cell Mol Med 2014;18:646–655.

99. Ma X, Long C, Wang F, Lou B, Yuan M, Duan F, et al. METTL3 attenuates proliferative vitreoretinopathy and epithelial-mesenchymal transition of retinal pigment epithelial cells via wnt/β-catenin pathway. J Cell Mol Med 2021;25:4220–4234.

100. Wang Y, Chen Y, Liang J, Jiang M, Zhang T, Wan X, et al. METTL3-mediated m6A modification of HMGA2 mRNA promotes subretinal fibrosis and epithelial-mesenchymal transition. J Mol Cell Biol 2023;15:mjad005.

101. Zhang C, Zhang Y, Hu X, Zhao Z, Chen Z, Wang X, et al. Luteolin inhibits subretinal fibrosis and epithelialmesenchymal transition in laser-induced mouse model via suppression of Smad2/3 and YAP signaling. Phytomedicine 2023;116:154865.

102. Hewitson TD, Kelynack KJ, Tait MG, Martic M, Jones CL, Margolin SB, et al. Pirfenidone reduces in vitro rat renal fibroblast activation and mitogenesis. J Nephrol 2001;14:453–460.

103. Gao C, Cao X, Huang L, Bao Y, Li T, Di Y, et al. Pirfenidone alleviates choroidal neovascular fibrosis through TGF-β/Smad signaling pathway. J Ophthalmol 2021;2021:8846708.

104. Wiedemann P, Lemmen K, Schmiedl R, Heimann K. Intraocular daunorubicin for the treatment and prophylaxis of traumatic proliferative vitreoretinopathy. Am J Ophthalmol 1987;104:10–14.

105. Wiedemann P, Hilgers RD, Bauer P, Heimann K; Daunomycin Study Group. Adjunctive daunorubicin in the treatment of proliferative vitreoretinopathy: results of a multicenter clinical trial. Am J Ophthalmol 1998;126:550–559.

106. Citirik M, Kabatas EU, Batman C, Akin KO, Kabatas N. Vitreous vascular endothelial growth factor concentrations in proliferative diabetic retinopathy versus proliferative vitreoretinopathy. Ophthalmic Res 2012;47:7–12.

107. Ghasemi Falavarjani K, Hashemi M, Modarres M, Hadavand Khani A. Intrasilicone oil injection of bevacizumab at the end of retinal reattachment surgery for severe proliferative vitreoretinopathy. Eye 2014;28:576–580.

108. Tousi A, Hasanpour H, Soheilian M. Intravitreal injection of bevacizumab in primary vitrectomy to decrease the rate of retinal redetachment: A randomized pilot study. J Ophthalmic Vis Res 2016;11:271–276.

109. Jonas JB, Hayler JK, Panda-Jonas S. Intravitreal injection of crystalline cortisone as adjunctive treatment of proliferative vitreoretinopathy. Br J Ophthalmol 2000;84:1064–1067.

110. Munir WM, Pulido JS, Sharma MC, Buerk BM. Intravitreal triamcinolone for treatment of complicated proliferative diabetic retinopathy and proliferative vitreoretinopathy. Can J Ophthalmol 2005;40:598–604.111. Lee Y, Kang S, Park YH. Posterior subtenon triamcinolone acetonide in gas-filled eyes as an adjunctive treatment for complicated proliferative diabetic retinopathy. Korean J Ophthalmol 2013;27:28–33.

111. Lee Y, Kang S, Park YH. Posterior subtenon triamcinolone acetonide in gas-filled eyes as an adjunctive treatment for complicated proliferative diabetic retinopathy. Korean J Ophthalmol 2013;27:28–33.

112. Jonas JB, Söfker A, Degenring R. Intravitreal triamcinolone acetonide as an additional tool in pars plana vitrectomy for proliferative diabetic retinopathy. Eur J Ophthalmol 2003;13:468–473.

113. Cheema RA, Peyman GA, Fang T, Jones A, Lukaris AD, Lim K. Triamcinolone acetonide as an adjuvant in the surgical treatment of retinal detachment with proliferative vitreoretinopathy. Ophthalmic Surg Lasers Imaging 2007;38:365–370.

114. Banerjee PJ, Quartilho A, Bunce C, Xing W, Zvobgo TM, Harris N, et al. Slow-release dexamethasone in proliferative vitreoretinopathy: A prospective, randomized controlled clinical trial. Ophthalmology 2017;124:757–767.

115. Ahmadieh H, Feghhi M, Tabatabaei H, Shoeibi N, Ramezani A, Mohebbi MR. Triamcinolone acetonide in silicone-filled eyes as adjunctive treatment for proliferative vitreoretinopathy: A randomized clinical trial. Ophthalmology 2008;115:1938–1943.

116. Dehghan MH, Ahmadieh H, Soheilian M, Azarmina M, Moradian S, Ramezani AR, et al. Effect of oral prednisolone on visual outcomes and complications after scleral buckling. Eur J Ophthalmol 2010;20:419–423.

117. Lemor M, de Bustros S, Glaser BM. Low-dose colchicine inhibits astrocyte, fibroblast, and retinal pigment epithelial cell migration and proliferation. Arch Ophthalmol 1986;104:1223–1225.

118. Ahmadieh H, Nourinia R, Ragati Haghi A, Ramezani A, Entezari M, Rahmani G, et al. Oral colchicine for prevention of proliferative vitreoretinopathy: A randomized clinical trial. Acta Ophthalmol 2015;93:e171–e172.

119. Kumar A, Nainiwal S, Sreenivas B. Intravitreal low molecular weight heparin in PVR surgery. Indian J Ophthalmol 2003;51:67–70.

120. Asaria RH, Kon CH, Bunce C, Charteris DG, Wong D, Khaw PT, et al. Adjuvant 5-fluorouracil and heparin prevents proliferative vitreoretinopathy: Results from a randomized, double-blind, controlled clinical trial. Ophthalmology 2001;108:1179–1183.

121. Ganekal S, Dorairaj S. Effect of intraoperative 5- fluorouracil and low molecular weight heparin on the outcome of high-risk proliferative vitreoretinopathy. Saudi J Ophthalmol 2014;28:257–261.

122. Charteris DG, Aylward GW, Wong D, Groenewald C, Asaria RH, Bunce C; PVR Study Group. A randomized controlled trial of combined 5-fluorouracil and lowmolecular- weight heparin in management of established proliferative vitreoretinopathy. Ophthalmology 2004;111:2240–2245.

123. Garcia RA, Sanchez JG, Arevalo JF. Combined 5- fluorouracil, low-molecular-weight heparin, and silicone oil in the management of complicated retinal detachment with proliferative vitreoretinopathy grade C. Ophthalmic Surg Lasers Imaging 2007;38:276–282.

124. Wickham L, Bunce C, Wong D, McGurn D, Charteris DG. Randomized controlled trial of combined 5-Fluorouracil and low-molecular-weight heparin in the management of unselected rhegmatogenous retinal detachments undergoing primary vitrectomy. Ophthalmology 2007;114:698–704.

125. Gangaputra S, Newcomb CW, Liesegang TL, Kaçmaz RO, Jabs DA, Levy-Clarke GA, et al.; Systemic Immunosuppressive Therapy for Eye Diseases Cohort Study. Methotrexate for ocular inflammatory diseases. Ophthalmology 2009;116:2188–98.e1.

126. Sadaka A, Sisk RA, Osher JM, Toygar O, Duncan MK, Riemann CD. Intravitreal methotrexate infusion for proliferative vitreoretinopathy. Clin Ophthalmol 2016;10:1811–1817.

127. Ghasemi Falavarjani K, Modarres M, Hadavandkhani A, Karimi Moghaddam A. Intra-silicone oil injection of methotrexate at the end of vitrectomy for advanced proliferative diabetic retinopathy. Eye 2015;29:1199–1203.

128. Nourinia R, Borna F, Rahimi A, Jabbarpoor Bonyadi MH, Amizadeh Y, Daneshtalab A, et al. Repeated injection of methotrexate into silicone oil-filled eyes for grade C proliferative vitreoretinopathy: A pilot study. Ophthalmologica 2019;242:113–117.

129. Daniel E, Toth CA, Grunwald JE, Jaffe GJ, Martin DF, Fine SL, et al.; Comparison of Age-related Macular Degeneration Treatments Trials Research Group. Risk of scar in the comparison of age-related macular degeneration treatments trials. Ophthalmology 2014;121:656–666.

130. Kumar A, Nainiwal S, Choudhary I, Tewari HK, Verma LK. Role of daunorubicin in inhibiting proliferative vitreoretinopathy after retinal detachment surgery. Clin Exp Ophthalmol 2002;30:348–351.