Journal of Ophthalmic and Vision Research
ISSN: 2008-322X
The latest research in clinical ophthalmology and vision science
Pharmaceutical and Therapeutic Applications of Royal Jelly for Ocular Surface Diseases: A Comprehensive Review
Published date: Oct 30 2025
Journal Title: Journal of Ophthalmic and Vision Research
Issue title: Volume 20 - 2025
Pages: 1 - 12
Authors:
Abstract:
Ocular surface diseases (OSDs) are conditions that affect the eye’s surface layers, including the cornea, conjunctiva, and glandular network, causing discomfort, visual disturbances, and tear film instability. OSDs include dry eye disease (DED), blepharitis, meibomian gland dysfunction, keratitis, conjunctivitis, and related disorders. These diseases represent a leading cause of ocular morbidity and are often accompanied by chronic inflammation, irritation, redness, and pain. Royal Jelly (RJ), a substance produced by worker bees, has been widely studied in ophthalmology for its therapeutic properties, including its ability to restore tear secretion, treat glaucoma and DED, and inhibit the production of reactive oxygen species (ROS). RJ is rich in proteins, fatty acids, and phenolic compounds, which contribute to its anti-inflammatory, antioxidant, antibacterial, vasodilatory, antitumor, and cholesterol-lowering properties. This review examines the pharmacological benefits of RJ, strategies to optimize its formulation, and methods for developing eye drop formulations—such as microemulsions and eye gels—for the treatment of OSDs. The literature supports RJ as a complementary therapy for OSDs due to its reported anti-inflammatory, antioxidant, and antimicrobial properties. Although preliminary studies are promising, more extensive clinical trials are required to establish standardized treatment protocols and confirm the efficacy and safety of RJ. The therapeutic potential of RJ components lies in their immunomodulatory properties, making them a compelling option for the treatment of OSDs. Further research is necessary to clarify their role in ocular regenerative medicine and expand their applications in clinical practice.
Keywords: Integrative Medicine, Ocular Surface Diseases, Royal Jelly, Traditional Persian Medicine, Treatment
References:
1. Oršolić N, Jazvinšćak Jembrek M. Royal jelly: Biological action and health benefits. Int J Mol Sci 2024;25:6023.
2. Collazo N, Carpena M, Nuñez-Estevez B, Otero P, Simal- Gandara J, Prieto MA. Health promoting properties of bee royal jelly: Food of the queens. Nutrients 2021;13:543.
3. da Silva RE, de Sousa Muniz VIM, de Sousa FB, Farias FFM, Felix JA, de Melo Nascimento JE, et al. Influência de diferentes quantidades de geleia real no desenvolvimento de rainhas de abelhas africanizadas (Apis mellifera L.). Res Soc Dev 2020;9:e994998071-e.
4. Bagameri L, Botezan S, Bobis O, Bonta V, Dezmirean DS. Molecular insights into royal jelly anti-inflammatory properties and related diseases. Life (Basel) 2023;13:1573.
5. Ramadan MF, Al-Ghamdi A. Bioactive compounds and health-promoting properties of royal jelly: A review. J Funct Foods 2012;4:39–52.
6. Botezan S, Baci GM, Bagameri L, Pașca C, Dezmirean DS. Current status of the bioactive properties of royal jelly: A comprehensive review with a focus on its anticancer, anti-inflammatory, and antioxidant effects. Molecules 2023;28:1510.
7. Ghosh S, Jung C. Chemical composition and nutritional value of royal jelly samples obtained from honey bee (Apis mellifera) hives fed on oak and rapeseed pollen patties. Insects 2024;15:141.
8. Peng ZW, Hung YT, Wu MC. Mechanistic exploration of royal jelly production in caged honey bees (Apis mellifera). Sci Rep 2024;14:30277.
9. Alu’datt MH, Al-U’datt D, Rababah T, Gammoh S, Alrosan M, Bani-Melhem K, et al. Recent research directions on functional royal jelly: Highlights prospects in food, nutraceutical, and pharmacological industries. Crit Rev Food Sci Nutr 2024:1–14. Advance online publication.
10. Khalfan Saeed Alwali Alkindi F, El–Keblawy A, Lamghari Ridouane F, Bano Mirza S. Factors influencing the quality of royal jelly and its components: A review. Cogent Food Agric 2024;10:2348253.
11. Salama S, Shou Q, Abd El-Wahed AA, Elias N, Xiao J, Swillam A, et al. Royal jelly: Beneficial properties and synergistic effects with chemotherapeutic drugs with particular emphasis in anticancer strategies. Nutrients 2022;14:4166.
12. Tian W, Li M, Guo H, Peng W, Xue X, Hu Y, et al. Architecture of the native major royal jelly protein 1 oligomer. Nat Commun 2018;9:3373.
13. Wang W, Li X, Li D, Pan F, Fang X, Peng W, et al. Effects of major royal jelly proteins on the immune response and gut microbiota composition in cyclophosphamide-treated mice. Nutrients 2023;15:974.
14. Oliveira MC, Pereira EM, Sereia MJ, Lima ÉG, Silva BG, Toledo VA, et al. Expression of MRJP3 and HSP70 mRNA levels in Apis mellifera L. Workers after dietary supplementation with proteins, prebiotics, and probiotics. Insects 2022;13:571.
15. Kosińska A, Karamać M, Penkacik K, Urbalewicz A, Amarowicz R. Interactions between tannins and proteins isolated from broad bean seeds (Vicia faba Major) yield soluble and non-soluble complexes. Eur Food Res Technol 2011;233:213–222.
16. Yan CY, Zhu QQ, Guan CX, Xiong GL, Chen XX, Gong HB, et al. Antioxidant and anti-inflammatory properties of hydrolyzed royal jelly peptide in human dermal fibroblasts: Implications for skin health and care applications. Bioengineering (Basel) 2024;11:496.
17. Wen D, Xie J, Yuan Y, Shen L, Yang Y, Chen W. The endogenous antioxidant ability of royal jelly in Drosophila is independent of Keap1/Nrf2 by activating oxidoreductase activity. Insect Sci 2024;31:503–523.
18. Shi C, Liu M, Zhao H, Lv Z, Liang L, Zhang B. A novel insight into screening for antioxidant peptides from hazelnut protein: Based on the properties of amino acid residues. Antioxidants (Basel, Switzerland) 2022;11.
19. Ozawa H, Miyazawa T, Burdeos GC, Miyazawa T. Biological functions of antioxidant dipeptides. J Nutr Sci Vitaminol (Tokyo) 2022;68:162–171.
20. Nazarinia D, Karimpour S, Hashemi P, Dolatshahi M. Neuroprotective effects of royal jelly (RJ) against pentylenetetrazole (PTZ)-induced seizures in rats by targeting inflammation and oxidative stress. J Chem Neuroanat 2023;129:102255.
21. Ulubayram N, Cinar AY. Microencapsulated and fresh royal jelly: Monitoring 10-HDA content, antibacterial and antifungal activity at different storage periods. Braz Arch Biol Technol 2023;66:e23220203.
22. Xia Z, Li Y, Liu J, Chen Y, Liu C, Hao Y. CRP and IHF act as host regulators in royal jelly’s antibacterial activity. Sci Rep 2024;14:19350.
23. Fahad MA, Yasmina S. Antimicrobial activity of royal jelly. Antiinfect Agents 2015;13:50–59.
24. Bagameri L, Baci GM, Dezmirean DS. Royal jelly as a nutraceutical natural product with a focus on its antibacterial activity. Pharmaceutics 2022;14:1142.
25. Terada Y, Narukawa M, Watanabe T. Specific hydroxy fatty acids in royal jelly activate TRPA1. J Agric Food Chem 2011;59:2627–2635.
26. Chen Y-F, Wang K, Zhang Y-Z, Zheng Y-F, Hu F-L. In vitro anti-inflammatory effects of three fatty acids from royal jelly. Mediators of inflammation 2016;2016.
27. Šedivá M, Laho M, Kohútová L, Mojžišová A, Majtán J, Klaudiny J. 10-HDA, a major fatty acid of royal jelly, exhibits pH dependent growth-inhibitory activity against different strains of Paenibacillus larvae. Molecules 2018;23:3236.
28. Inoue S, Kawashima M, Hisamura R, Imada T, Izuta Y, Nakamura S, et al. Clinical evaluation of a royal jelly supplementation for the restoration of dry eye: A prospective randomized double blind placebo controlled study and an experimental mouse model. PLoS One 2017;12:e0169069.
29. Perminaite K, Marksa M, Stančiauskaitė M, Juknius T, Grigonis A, Ramanauskiene K. Formulation of ocular in situ evaluation in vitro. Molecules 2021;26:3552.
30. Wu Y, Liu Y, Li X, Kebebe D, Zhang B, Ren J, et al. Research progress of in-situ gelling ophthalmic drug delivery system. Asian J Pharm Sci 2019;14:1–15.
31. Ranch K, Patel H, Chavda L, Koli A, Maulvi F, Parikh RK. Development of in situ ophthalmic gel of dexamethasone sodium phosphate and chloramphenicol: A viable alternative to conventional eye drops. J Appl Pharm Sci 2017;7:101–108.
32. Soliman KA, Ullah K, Shah A, Jones DS, Singh TR. Poloxamer-based in situ gelling thermoresponsive systems for ocular drug delivery applications. Drug Discov Today 2019;24:1575–1586.
33. M A Fathalla Z, Vangala A, Longman M, Khaled KA, Hussein AK, El-Garhy OH, et al. Poloxamer-based thermoresponsive ketorolac tromethamine in situ gel preparations: Design, characterisation, toxicity and transcorneal permeation studies. Eur J Pharm Biopharm 2017;114:119–134.
34. Giuliano E, Paolino D, Fresta M, Cosco D. Mucosal applications of poloxamer 407-based hydrogels: An overview. Pharmaceutics 2018;10:159.
35. Akash MS, Rehman K. Recent progress in biomedical applications of Pluronic (PF127): Pharmaceutical perspectives. J Control Release 2015;209:120–138.
36. Abdelkader H, Pierscionek B, Carew M, Wu Z, Alany RG. Critical appraisal of alternative irritation models: Three decades of testing ophthalmic pharmaceuticals. Br Med Bull 2015;113:59–71.
37. Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, Mittal G. An alternative in situ gel-formulation of levofloxacin eye drops for prolong ocular retention. J Pharm Bioallied Sci 2015;7:9–14.
38. Tsubota K, Yokoi N, Shimazaki J, Watanabe H, Dogru M, Yamada M, et al.; Asia Dry Eye Society. New perspectives on dry eye definition and diagnosis: A consensus report by the Asia Dry Eye Society. Ocul Surf 2017;15:65–76.
39. Stapleton F, Alves M, Bunya VY, Jalbert I, Lekhanont K, Malet F, et al. Tfos dews ii epidemiology report. Ocul Surf 2017;15:334–365.
40. Imada T, Nakamura S, Kitamura N, Shibuya I, Tsubota K. Oral administration of royal jelly restores tear secretion capacity in rat blink-suppressed dry eye model by modulating lacrimal gland function. PLoS One 2014;9:e106338.
41. Wei W, Wei M, Kang X, Deng H, Lu Z. A novel method developed for acetylcholine detection in royal jelly by using capillary electrophoresis coupled with electrogenerated chemiluminescence based on a simple reaction. Electrophoresis 2009;30:1949–1952.
42. Xu Y, Yang X, Wang T, Yang L, He YY, Miskimins K, et al. Knockdown delta-5-desaturase in breast cancer cells that overexpress COX-2 results in inhibition of growth, migration and invasion via a dihomo-γ-linolenic acid peroxidation dependent mechanism. BMC Cancer 2018;18:330.
43. Isidorow W, Witkowski S, Iwaniuk P, Zambrzycka M, Swiecicka I. Royal jelly aliphatic acids contribute to antimicrobial activity of honey. J Apic Sci 2018;62:111–123.
44. Isidorov VA, Bakier S, Grzech I. Gas chromatographicmass spectrometric investigation of volatile and extractable compounds of crude royal jelly. J Chromatogr B Analyt Technol Biomed Life Sci 2012;885–886:109–116.
45. Sugiyama T, Takahashi K, Mori H. Royal jelly acid, 10- hydroxy-trans-2-decenoic acid, as a modulator of the innate immune responses. Endocr Metab Immune Disord Drug Targets 2012;12:368–376.
46. Takikawa M, Kumagai A, Hirata H, Soga M, Yamashita Y, Ueda M, et al. 10-Hydroxy-2-decenoic acid, a unique medium-chain fatty acid, activates 5′-AMP-activated protein kinase in L6 myotubes and mice. Mol Nutr Food Res 2013;57:1794–1802.
47. Moutsatsou P, Papoutsi Z, Kassi E, Heldring N, Zhao C, Tsiapara A, et al. Fatty acids derived from royal jelly are modulators of estrogen receptor functions. PLoS One 2010;5:e15594.
48. Guardia de Souza E Silva T, do Val de Paulo ME, da Silva JR, da Silva Alves A, Britto LR, Xavier GF, et al. Oral treatment with royal jelly improves memory and presents neuroprotective effects on icv-STZ rat model of sporadic Alzheimer’s disease. Heliyon 2020;6:e03281.
49. Yamaga M, Imada T, Tani H, Nakamura S, Yamaki A, Tsubota K. Acetylcholine and royal jelly fatty acid combinations as potential dry eye treatment components in mice. Nutrients 2021;13:2536.
50. Wang MT, Cai YR, Jang V, Meng HJ, Sun LB, Deng LM, et al. Establishment of a corneal ulcer prognostic model based on machine learning. Sci Rep 2024;14:16154.
51. Kodali S, Khan B, Zong AM, Moon JY, Shrivastava A, Daily JP, et al. Prognostic indicators of corneal ulcer clinical outcomes at a tertiary care center in the Bronx, New York. J Ophthalmic Inflamm Infect 2024;14:18.
52. Byrd LB, Gurnani B, Martin N. Corneal ulcer. StatPearls Publishing; 2024.
53. Salehi A, Jabarzare S, Neurmohamadi M, Kheiri S, Rafieian-Kopaei M. A double blind clinical trial on the efficacy of honey drop in vernal keratoconjunctivitis. Evid Based Complement Alternat Med 2014;2014.
54. Albietz JM, Lenton LM. Standardised antibacterial Manuka honey in the management of persistent postoperative corneal oedema: A case series. Clin Exp Optom 2015;98:464–472.
55. Ker-Woon C, Abd Ghafar N, Hui CK, Mohd Yusof YA, Wan Ngah WZ. The effects of acacia honey on in vitro corneal abrasion wound healing model. BMC Cell Biol 2015;16:2.
56. Prinz J, Maffulli N, Fuest M, Walter P, Hildebrand F, Migliorini F. Honey-related treatment strategies in dry eye disease. Pharmaceuticals (Basel) 2023;16:762.
57. Kobayashi G, Okamura T, Majima S, Senmaru T, Okada H, Ushigome E, et al. Effects of royal jelly on gut dysbiosis and NAFLD in db/db mice. Nutrients 2023;15:2580.
58. You M-M, Chen Y-F, Pan Y-M, Liu Y-C, Tu J, Wang K, et al. Royal jelly attenuates LPS-induced inflammation in BV-2 microglial cells through modulating NF-κB and p38/JNK signaling pathways. Mediators Inflamm 2018;2018:7834381.
59. Akkurt Arslan M, Brignole-Baudouin F, Chardonnet S, Pionneau C, Blond F, Baudouin C, et al. Profiling tear film enzymes reveals major metabolic pathways involved in the homeostasis of the ocular surface. Sci Rep 2023;13:15231.
60. Pena-Verdeal H, Garcia-Queiruga J, Sabucedo-Villamarin B, Giraldez MJ, Yebra-Pimentel E. Tear film osmolarity variation between weeks in healthy and dry eye disease subjects. Arq Bras Oftalmol 2023;87:e2022–0043.
61. Wang J, Shen Y, Zhou X, Yu Z, Hong J, Le Q. Evaluation of tear film function by Oculus Keratograph 5M and IDRA ocular surface analyser. Int Ophthalmol 2024;44:403.
62. Kaštelan S, Gabrić K, Mikuličić M, Mrazovac Zimak D, Karabatić M, Gverović Antunica A. The influence of tear film quality on visual function. Vision (Basel) 2024;8:8.
63. de Paiva CS. Effects of aging in dry eye. Int Ophthalmol Clin 2017;57:47–64.
64. de Souza RG, de Paiva CS, Alves MR. Age-related autoimmune changes in lacrimal glands. Immune Netw 2019;19:e3.
65. Azmi MF, Abd Ghafar N, Che Hamzah J, Chua KH, Ng SL. The role of Gelam honey in accelerating reepithelialization of ex vivo corneal abrasion model. J Food Biochem 2021;45:e13645.
66. Sanie-Jahromi F, Khaki M, Heydari M, Nowroozzadeh MH, Akbarizadeh AR, Daneshamouz S, et al. Effect of low dose honey on the apoptosis and inflammation gene expression in corneal limbal stem cells and keratocytes and its efficacy as an ophthalmic formulation in the treatment of dry eye: In-vitro and clinical study. Front Med (Lausanne) 2024;11:1359463.
67. Gleixner S, Zahn I, Dietrich J, Singh S, Drobny A, Schneider Y, et al. A new immortalized human lacrimal gland cell line. Cells 2024;13:622.
68. Pavel R, Ene I, Costea R. Exploring lacrimal gland tear production in sheep under general anesthesia: Examining the potential impact of utilizing 1% hyaluronic acid ophthalmic gel. Life (Basel) 2024;14:1038.
69. Harrell CR, Feulner L, Djonov V, Pavlovic D, Volarevic V. The molecular mechanisms responsible for tear hyperosmolarity-induced pathological changes in the eyes of dry eye disease patients. Cells 2023;12:2755.
70. Tóth-Molnár E, Ding C. New insight into lacrimal gland function: Role of the duct epithelium in tear secretion. Ocul Surf 2020;18:595–603.
71. Lin F, Tang R, Zhang C, Scholz N, Nagel G, Gao S. Combining different ion-selective channelrhodopsins to control water flux by light. Pflugers Arch 2023;475:1375– 1385.
72. Estévez-Herrera J, Domínguez N, Pardo MR, González- Santana A, Westhead EW, Borges R, et al. ATP: The crucial component of secretory vesicles. Proc Natl Acad Sci USA 2016;113:E4098–E4106.
73. Ozu M, Alvear-Arias JJ, Fernandez M, Caviglia A, Peña- Pichicoi A, Carrillo C, et al. Aquaporin gating: A new twist to unravel permeation through water channels. Int J Mol Sci 2022;23:12317.
74. Ouyang W, Yan D, Hu J, Liu Z. Multifaceted mitochondrial as a novel therapeutic target in dry eye: Insights and interventions. Cell Death Discov 2024;10:398.
75. Peng F, Jiang D, Xu W, Sun Y, Zha Z, Tan X, et al. AMPK/MFF activation: Role in mitochondrial fission and mitophagy in dry eye. Invest Ophthalmol Vis Sci 2022;63:18.
76. Dunn DM, Munger J. Interplay between calcium and AMPK signaling in human cytomegalovirus infection. Front Cell Infect Microbiol 2020;10:384.
77. Morokuma J, Bowman M, Garriz A, Mariano MV, Hatzipetrou GP, Zoukhri DZ. Role of the adenylate cyclase/cyclic AMP pathway in oxytocin-induced lacrimal myoepithelial cells contraction. Invest Ophthalmol Vis Sci 2022;63:1970–A0300-1970–A0300.
78. Kubota M, Kawashima M, Inoue S, Imada T, Nakamura S, Kubota S, et al. Randomized, crossover clinical efficacy trial in humans and mice on tear secretion promotion and lacrimal gland protection by molecular hydrogen. Sci Rep 2021;11:6434.
79. García-Posadas L, Hodges RR, Utheim TP, Olstad OK, Delcroix V, Makarenkova HP, et al. Lacrimal gland myoepithelial cells are altered in a mouse model of dry eye disease. Am J Pathol 2020;190:2067–2079.
80. Gagliano C, Papa V, Amato R, Malaguarnera G, Avitabile T. Measurement of the retention time of different ophthalmic formulations with ultrahigh-resolution optical coherence tomography. Curr Eye Res 2018;43:499–502.
81. Bachu RD, Stepanski M, Alzhrani RM, Jung R, Boddu SH. Development and evaluation of a novel microemulsion of dexamethasone and tobramycin for topical ocular administration. J Ocul Pharmacol Ther 2018;34:312–324.
82. McClements DJ. Nanoemulsions versus microemulsions: Terminology, differences, and similarities. Soft Matter 2012;8:1719–1729.
83. Perminaite K, Marksa M, Ivanauskas L, Ramanauskiene K. Preparation of ophthalmic microemulsions containing Lithuanian royal jelly and their biopharmaceutical evaluation. Processes (Basel) 2021;9:616.
84. Balkanska R, Zhelyazkova I, Ignatova M. Physico-chemical quality characteristics of royal jelly from three regions of Bulgaria. Agric Sci Technol 2012;4.
85. Dash P, Ghosh G. Amino acid composition, antioxidant and functional properties of protein hydrolysates from Cucurbitaceae seeds. J Food Sci Technol 2017;54:4162– 4172.
86. Aragona P, Rania L, Roszkowska AM, Spinella R, Postorino E, Puzzolo D, et al. Effects of amino acids enriched tears substitutes on the cornea of patients with dysfunctional tear syndrome. Acta Ophthalmol 2013;91:e437–e444.
87. Kumar R, Sinha VR. Preparation and optimization of voriconazole microemulsion for ocular delivery. Colloids Surf B Biointerfaces 2014;117:82–88.
88. Youshia J, Kamel AO, El Shamy A, Mansour S. Design of cationic nanostructured heterolipid matrices for ocular delivery of methazolamide. Int J Nanomedicine 2012;7:2483–2496.
89. Tian Y, Liu X, Wang J, Zhang C, Yang W. Antitumor effects and the potential mechanism of 10-HDA against SU-DHL-2 cells. Pharmaceuticals (Basel) 2024;17:1088.
90. Suriyaamporn P, Opanasopit P, Rangsimawong W, Ngawhirunpat T. Optimal design of novel microemulsionsbased two-layered dissolving microneedles for delivering fluconazole in treatment of fungal eye infection. Pharmaceutics 2022;14:472.
91. Ali AM, Kunugi H. Royal jelly as an intelligent anti-aging agent-A focus on cognitive aging and Alzheimer’s disease: A review. Antioxidants 2020;9:937.
92. Makwana SB, Patel VA, Parmar SJ. Development and characterization of in-situ gel for ophthalmic formulation containing ciprofloxacin hydrochloride. Results Pharma Sci 2015;6:1–6.
93. Dumortier G, Grossiord JL, Agnely F, Chaumeil JC. A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm Res 2006;23:2709–2728.
94. Uchino Y, Kawakita T, Miyazawa M, Ishii T, Onouchi H, Yasuda K, et al. Oxidative stress induced inflammation initiates functional decline of tear production. PLoS One 2012;7:e45805.
95. Navel V, Sapin V, Henrioux F, Blanchon L, Labbé A, Chiambaretta F, et al. Oxidative and antioxidative stress markers in dry eye disease: A systematic review and metaanalysis. Acta Ophthalmol 2022;100:45–57.
96. Atalay K, Cabuk KS, Kirgiz A, Caglar AK. Treatment of corneal alkali burn with chestnut honey, royal jelly, and chestnut honey-royal jelly mixture. Beyoglu Eye J 2019;4:196–201.
97. Majtan J, Kumar P, Majtan T, Walls AF, Klaudiny J. Effect of honey and its major royal jelly protein 1 on cytokine and MMP-9 mRNA transcripts in human keratinocytes. Exp Dermatol 2010;19:e73–e79.
98. Schuh CM, Aguayo S, Zavala G, Khoury M. Exosome-like vesicles in Apis mellifera bee pollen, honey and royal jelly contribute to their antibacterial and pro-regenerative activity. J Exp Biol 2019;222:jeb208702.
99. Álvarez S, Contreras-Kallens P, Aguayo S, Ramírez O, Vallejos C, Ruiz J, et al. Royal jelly extracellular vesicles promote wound healing by modulating underlying cellular responses. Mol Ther Nucleic Acids 2023;31:541–552.
100. Karadeniz A, Simsek N, Karakus E, Yildirim S, Kara A, Can I, et al. Royal jelly modulates oxidative stress and apoptosis in liver and kidneys of rats treated with cisplatin. Oxid Med Cell Longev 2011;2011:981793.
101. Mira M, Wibowo A, Tajalla GU, Cooper G, Bartolo PJ, Barlian A. Osteogenic potential of a 3D printed silver nanoparticle-based electroactive scaffold for bone tissue engineering using human Wharton’s jelly mesenchymal stem cells. Mater Adv 2023;4:6407–6418.
102. Peng CC, Sun HT, Lin IP, Kuo PC, Li JC. The functional property of royal jelly 10-hydroxy-2-decenoic acid as a melanogenesis inhibitor. BMC Complement Altern Med 2017;17:392.
103. Wan DC, Morgan SL, Spencley AL, Mariano N, Chang EY, Shankar G, et al. Honey bee Royalactin unlocks conserved pluripotency pathway in mammals. Nat Commun 2018;9:5078.
104. Mazangi H, Deldar H, Kashan N, Mohammadi- Sangcheshmeh A. 305 royal jelly treatment during oocyte maturation improves in vitro meiotic competence of goat oocytes by influencing intracellular glutathione synthesis and apoptosis gene expression. Reprod Fertil Dev 2015;27:241.
105. Veshkini A, Mohammadi-Sangcheshmeh A, Ghanem N, Abazari-Kia AH, Mottaghi E, Kamaledini R, et al. Oocyte maturation with royal jelly increases embryo development and reduces apoptosis in goats. Anim Reprod 2018;15:124–134.
106. Albalawi AE, Althobaiti NA, Alrdahe SS, Alhasani RH, Alaryani FS, BinMowyna MN. Antitumor activity of royal jelly and its cellular mechanisms against Ehrlich solid tumor in mice. BioMed Res Int 2022;2022:7233997.
107. Ebrahimie M, Asgharzadih S, Shirzad H, Ebrahimie N, Hoseini M, Rafieian-kopaei M. An evaluation of the influence of royal jelly on differentiation of stem cells into neuronal cells in vitro. Majallah-i Danishgah-i Ulumi Pizishki-i Babul 2016;18:38–44.
108. Li W, Mandeville ET, Durán-Laforet V, Fukuda N, Yu Z, Zheng Y, et al. Endothelial cells regulate astrocyte to neural progenitor cell trans-differentiation in a mouse model of stroke. Nat Commun 2022;13:7812.
109. Ramírez OJ, Alvarez S, Contreras-Kallens P, Barrera NP, Aguayo S, Schuh CM. Type I collagen hydrogels as a delivery matrix for royal jelly derived extracellular vesicles. Drug Deliv 2020;27:1308–1318.
110. Spanidi E, Athanasopoulou S, Liakopoulou A, Chaidou A, Hatziantoniou S, Gardikis K. Royal jelly components encapsulation in a controlled release system-skin functionality, and biochemical activity for skin applications. Pharmaceuticals (Basel) 2022;15:907.
111. Tan N, Xin W, Huang M, Mao Y. Mesenchymal stem cell therapy for ischemic stroke: Novel insight into the crosstalk with immune cells. Front Neurol 2022;13:1048113.
112. Wu J, Sun X, Zhang S. Royal jelly peptide promotes retinal ganglion cell survival in experimental model of glaucoma through up-regulating BDNF and GDNF. Invest Ophthalmol Vis Sci 2012;53:6581.
113. Atalay K, Cabuk KS, Kirgiz A, Caglar AK. Treatment of corneal alkali burn with chestnut honey, royal jelly, and chestnut honey-royal jelly mixture. Beyoglu Eye J 2019;4:196–201.