Journal of Excellence in Wellness and Environmental Studies

ISSN:

The latest studies on sustainability, environment, health, and well-being

Decarbonizing the Cement Industry: A Comprehensive Analysis of Renewable Energy Pathways and GHG Emissions in the UAE

Published date: Oct 20 2025

Journal Title: Journal of Excellence in Wellness and Environmental Studies

Issue title: Journal of Excellence in Wellness and Environmental Studies: Volume 1, Issue 1

Pages: 46 - 65

DOI: 10.18502/jewes.v1i1.18838

Authors:

Abdulla Hasan Abdulla Alshehhithe-manager321@live.comSchool of Sustainability and Green Economy, Hamdan Bin Mohammed Smart University, Dubai

Mohammad AljaradinM.AlJaradin@hbmsu.ac.aeSchool of Sustainability and Green Economy, Hamdan Bin Mohammed Smart University, Dubai

Abstract:

This study presents a comprehensive analysis of decarbonization strategies for the cement industry, with a particular focus on the United Arab Emirates (UAE). The cement sector contributes approximately 6-7% of global CO₂ emissions, with 60% originating from limestone decomposition during clinker production and 40% from fossil fuel combustion. Using the Greenhouse Gases, Regulated Emissions, and Energy Use in Technologies (GREET) tool, we evaluated six renewable energy pathways. Three renewable natural gas (RNG) sources (landfill gas, Canadian natural gas, and North American natural gas for Fischer-Tropsch plants) and three renewable electricity mixes (Alberta, alumina reduction, and wind). Ridge regression modeling was employed to analyze emission trends in the UAE cement industry from 2018 to 2022. Our findings reveal that wind electricity pathways can reduce emissions by approximately 75% per ton of cement, while RNG pathways offer significant reductions where electricity infrastructure is limited. Integration of carbon capture technologies with renewable energy sources could further reduce the carbon footprint. These insights provide actionable guidance for policymakers and industry stakeholders to implement effective decarbonization strategies aligned with the UAE’s sustainability goals.

Keywords: cement industry, decarbonization, greenhouse gas emissions, renewable energy, life cycle assessment, UAE, GREET tool

References:

[1] Al-Hajj, A., & Hamani, K. (2011). Material waste in the UAE construction industry: Main causes and minimization practices. Architectural Engineering and Design Management, 7(4), 221–235. https://doi.org/10.1080/17452007.2011.594576

[2] Andrew, R. M. (2018). Global CO2 emissions from cement production. Earth System Science Data, 10(1), 195–217. https://doi.org/10.5194/essd-10-195-2018 Argonne GREET Model. (2019). Anl.gov. https://greet.es.anl.gov/

[3] Bataille, C. (2019). Low and zero emissions in the steel and cement industries: Barriers, technologies and policies. OECD Green Growth Papers, No. 2019/01. OECD Publishing., https://doi.org/10.1787/5ccf8e33-

[4] Bataille, C., Åhman, M., Neuhoff, K., Nilsson, L. J., Fischedick, M., Lechtenböhmer, S., Solano- Rodriquez, B., Denis-Ryan, A., Stiebert, S., Waisman, H., Sartor, O., & Rahbar, S. (2018). A review of technology and policy deep decarbonization pathway options for making energy-intensive industry production consistent with the Paris Agreement. Journal of Cleaner Production, 187, 960–973. https://doi.org/10.1016/j.jclepro.2018.03.107

[5] Bui, M., Adjiman, C. S., Bardow, A., Anthony, E. J., Boston, A., Brown, S., Fennell, P. S., Fuss, S., Galindo, A., Hackett, L. A., Hallett, J. P., Herzog, H. J., Jackson, G., Kemper, J., Krevor, S., Maitland, G. C., Matuszewski, M., Metcalfe, I. S., Petit, C., Mac Dowell, N. (2018). Carbon capture and storage (CCS): The way forward. Energy & Environmental Science, 11(5), 1062–1176. https://doi.org/10.1039/C7EE02342A

[6] Cao, Z., Myers, R. J., Lupton, R. C., Duan, H., Sacchi, R., Zhou, N., Reed Miller, T., Cullen, J. M., Ge, Q., & Liu, G. (2020). The sponge effect and carbon emission mitigation potentials of the global cement cycle. Nature Communications, 11(1), 3777. https://doi.org/10.1038/s41467-020-17583-w

[7] Ellis, L. D., Badel, A. F., Chiang, M. L., Park, R. J.-Y., & Chiang, Y.-M. (2020). Toward electrochemical synthesis of cement-An electrolyzer-based process for decarbonating CaCO3 while producing useful gas streams. Proceedings of the National Academy of Sciences of the United States of America, 117(23), 12584–12591. https://doi.org/10.1073/pnas.1821673116

[8] Favier, A., De Wolf, C., Scrivener, K., & Habert, G. (2018). A sustainable future for the European Cement and Concrete Industry: Technology assessment for full decarbonisation of the industry by 2050. https://doi.org/10.3929/ethz-b-000301843

[9] F. Apel, J. Hoyt, F. Marques, S. Reiter, and P. Schulze, “Cementing your lead: The cement industry in the net-zero transition,” McKinsey & Company, Oct. 06, 2023.

[10] Gartner, E., & Hirao, H. (2015). A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete. Cement and Concrete Research, 78, 126–142. https://doi.org/10.1016/j.cemconres.2015.04.012

[11] Hills, T., Leeson, D., Florin, N., & Fennell, P. (2016). Carbon capture in the cement industry: Technologies, progress, and retrofitting. Environmental Science & Technology, 50(1), 368–377. https://doi.org/10.1021/acs.est.5b03508

[12] IEA. (2018, April). Technology Roadmap - Low-Carbon Transition in the Cement Industry – Analysis. IEA. https://www.iea.org/reports/technology-roadmap-low-carbon-transition-in-the-cement-industry

[13] Cement – Analysis. (n.d.). IEA. https://www.iea.org/reports/cement

[14] Kajaste, R., & Hurme, M. (2016). Cement industry greenhouse gas emissions – management options and abatement cost. Journal of Cleaner Production, 112, 4041–4052. https://doi.org/10.1016/j.jclepro.2015.07.055

[15] Khondaker, A. N., Hasan, M. A., Rahman, S. M., Malik, K., Shafiullah, M., & Muhyedeen, M. A. (2016). Greenhouse gas emissions from energy sector in the United Arab Emirates – An overview. Renewable & Sustainable Energy Reviews, 59, 1317–1325. https://doi.org/10.1016/j.rser.2016.01.027

[16] Lehne, J., & Preston, F. (2018, June 13). Making Concrete Change: Innovation in Low-carbon Cement and Concrete. Chatham House. https://www.chathamhouse.org/2018/06/making-concrete-changeinnovation- low-carbon-cement-and-concrete

[17] Madlool, N. A., Saidur, R., Rahim, N. A., & Kamalisarvestani, M. (2013). An overview of energy savings measures for cement industries. Renewable & Sustainable Energy Reviews, 19, 18–29. https://doi.org/10.1016/j.rser.2012.10.046

[18] McMillan, C., Boardman, R., McKellar, M., Sabharwall, P., Ruth, M., & Bragg-Sitton, S. (2021). Generation and use of thermal energy in the U.S. industrial sector and opportunities to reduce its carbon emissions. National Renewable Energy Laboratory. NREL/TP-6A50-77434. https://www.nrel.gov/docs/fy21osti/77434.pdf

[19] Ministry of Climate Change and Environment. (2021). National Climate Change Plan of the United Arab Emirates 2017-2050. United Arab Emirates Government. https://u.ae/en/about-the-uae/strategiesinitiatives- and-awards/strategies-plans-and-visions/environment-and-energy/national-climate-changeplan- of-the-uae

[20] Ministry of Energy and Infrastructure. (2021). UAE Energy Strategy 2050. United Arab Emirates Government. https://www.moei.gov.ae/en/knowledge-center/strategies/the-uae-energy-strategy-2050.aspx

[21] Mokdad, M., & Debbar, M. (2019). Cement industry in the Arab Gulf Cooperation Council countries: Challenges and opportunities. Journal of Engineering Research and Reports, 7(3), 1–13. https://doi.org/10.9734/jerr/2019/v7i317005

[22] Prussi, M., Padella, M., Conton, M., Postma, E. D., & Lonza, L. (2019). Review of technologies for biomethane production and assessment of Eu transport share in 2030. Journal of Cleaner Production, 222, 565–572. https://doi.org/10.1016/j.jclepro.2019.02.271

[23] Rahman, A., Rasul, M. G., Khan, M. M. K., & Sharma, S. (2015). Recent development on the uses of alternative fuels in cement manufacturing process. Fuel, 145, 84–99. https://doi.org/10.1016/j.fuel.2014.12.029

[24] Scrivener, K. L., John, V. M., & Gartner, E. M. (2018). Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research, 114, 2–26. https://doi.org/10.1016/j.cemconres.2018.03.015

[25] Spinelli, M., Martínez, I., Romano, M. C., Campanari, S., Consonni, S., Cinti, G., Marchi, M., & Cinti, E. (2018). The calcium looping process for low CO2 emission cement plants. Energy, 147, 105–118. https://doi.org/10.1016/j.energy.2018.01.011

[26] Talebian, H., Herrera, O. E., Mérida, W., & Talebian, M. (2021). Spatial and temporal optimization of hydrogen fuel supply chain for light duty passenger vehicles in British Columbia. International Journal of Hydrogen Energy, 46(1), 1366–1387. https://doi.org/10.1016/j.ijhydene.2020.10.035

[27] Van den Heede, P., & De Belie, N. (2012). Environmental impact and life cycle assessment (LCA) of traditional and ‘green’ concretes: Literature review and theoretical calculations. Cement and Concrete Composites, 34(4), 431–442. https://doi.org/10.1016/j.cemconcomp.2012.01.004

[28] Voldsund, M., Gardarsdottir, S. O., De Lena, E., Pérez-Calvo, J.-F., Jamali, A., Berstad, D., Fu, C., Romano, M., Roussanaly, S., Anantharaman, R., Hoppe, H., Sutter, D., Mazzotti, M., Gazzani, M., Cinti, G., & Jordal, K. (2019). Comparison of technologies for CO2 capture from cement production—Part 1: Technical evaluation. Energies, 12(3), 559. https://doi.org/10.3390/en12030559

[29] Wang, J., Wang, R., Zhu, Y., & Li, J. (2020). Life cycle assessment and environmental cost accounting of coal-fired power generation in China. Energy Policy, 139, 111356. https://doi.org/10.1016/j.enpol.2020.111356

[30] Worrell, E., Kermeli, K., & Galitsky, C. (2013). Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making: An ENERGY STAR® Guide for Energy and Plant Managers. Lawrence Berkeley National Laboratory. https://www.energystar.gov/sites/default/files/tools/ ENERGY%20STAR%20Guide%20for%20the%20Cement%20Industry%2027_08_2013_Rev%20js% 20reformat%2006112018_508.pdf

[31] Zhang, D., Ghouleh, Z., & Shao, Y. (2017). Review on carbonation curing of cement-based materials. Journal of CO2 Utilization, 21, 119–131. https://doi.org/10.1016/j.jcou.2017.07.003