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Introduction: Gestational diabetes (GDM) complicates around 14% of pregnancies
globally. While GDM’s physiological effects are often transient, its long-lasting effects
on the mother and the child are significant. Studies show a heightened chance of
autism occurring in offspring subjected to gestational diabetes in utero.

Methods: A thorough search of literature was performed across PubMed, SCOPUS,
and ProQuest, identifying 35 relevant studies published between 2012 and 2024.
This review focuses on exploring the impact of GDM on the offspring’s chances of
developing autism. It aims to explore the factors influencing this relationship, such as
the timing of GDM onset, the presence of coexisting complications, and the condition’s
underlying mechanisms.

Results: The findings demonstrate that gestational diabetes can significantly increase
the risk of autism. Key factors influencing this relationship include the timing of
diagnosis, maternal glucose management, and treatment strategies during pregnancy.
Potential mechanisms include increased fetal exposure to inflammation, oxidative
stress, and immune dysregulation.

Conclusion: The findings highlight the importance of early and effective GDM man-
agement and its pediatric implications for improving neurodevelopmental outcomes
in offspring during early childhood.
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Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder marked by repetitive and seemingly
purposeless behaviors, limited areas of interest, and varying degrees of communication difficulties [1].
Globally, ASD is recognized as a significant pediatric concern, with approximately 1 in 100 children
diagnosed [2]. The disorder often persists throughout the individuals’ lives, profoundly affecting the
life quality of both them and their family [3]. Among the various prenatal risk factors, maternal metabolic
conditions—particularly Gestational Diabetes Mellitus (GDM)—have drawn increasing attention due to
their potential role in fetal neurodevelopmental disruption. Understanding the link between GDM and
the pathogenesis of ASD is critical, particularly for pediatricians responsible for early screening and

intervention in affected children.

Based on the 2021 estimates from the International Diabetes Federation (IDF), GDM complicates
around 14% of pregnancies globally [4]. Although the metabolic disturbances associated with GDM often
resolve post-delivery, the long-term implications for both maternal and offspring health remain significant
[5]. The timing of GDM onset, typically during the second and third trimesters, overlaps with critical
periods of rapid fetal brain development. Emerging evidence points to a link between GDM and adverse

neurodevelopmental outcomes in children, including an increased ASD risk [6].

This review aims to explore the underlying mechanisms by which GDM can affect fetal brain devel-
opment, potentially increasing ASD risk. Additionally, it will examine the clinical factors influencing this

association and discuss its pediatric implications, particularly for screenings and early intervention.

This narrative review synthesizes the literature on the influence of GDM on the development of ASD in
offspring. An electronic literature search was conducted on March 31, 2024, across PubMed, SCOPUS, and
ProQuest. The search encompassed studies published between January 1, 2012, and March 31, 2024.
Medical Subject Headings (MeSH) terms used included: “Gestational diabetes”, “Gestational diabetes
mellitus”, “Autism Spectrum Disorder”, and “Autistic disorder”, along with free-text keywords such as

“Diabetes”, “Gestational Diabetes”, “Autism”, “Autism Spectrum Disorder”, and “Neurodevelopment”.

Inclusion criteria restricted the search to studies that specifically addressed the association between
GDM and the offspring’s risk of autism. Studies were excluded if they focused on chronic diabetes mellitus
and ASD; combined chronic diabetes and GDM as a single entity, unless it was feasible to obtain specif-
ically related to GDM; investigated the relationship between GDM and neurodevelopmental disorders
without specifically focusing on ASD; explored associations between prenatal metabolic syndrome and
ASD in offspring; were duplicates or published in languages other than English and the English translation

was not available.
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The search yielded a total of 3830 articles (1822 from ProQuest, 1282 from PubMed, and 726 from
SCOPUS) after removing the duplicates. Following screening and application of the exclusion criteria,
35 articles were included. Figure 1 illustrates the Preferred Reporting ltems for Systematic Reviews and
Meta-Analysis (PRISMA).

Identification of studies via databases and registers
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Figure 1: The preferred reporting items 126 for systematic reviews and meta-analysis (PRISMA). (ASD = Autism spectrum disorder,
GDM = Gestational diabetes).

A comprehensive literature search identified a total of 35 studies. Among these, 11 studies specifically
measured the association between GDM and ASD. Most studies, including two meta-analyses, suggest
that GDM is linked to a heightened chance of ASD in offspring [7-12], with the calculated Odds Ratio (OR)
ranging from 110 to 1.43 [7, 8]. Rowland et al. conducted a meta-analysis of 18 studies, concluding that

pregnancies complicated by GDM were associated with a pooled OR of 1.42 (95% confidence interval
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(Cl) .22, 1.65]) [8]. However, a few studies reported no significant associations, possibly due to limited

sample sizes [13, 14].

Other studies provided additional insights into the role of maternal factors. Kong et al. reported that
the likelihood of ASD increased with higher body mass index (BMI) among diabetic mothers, with greater
risk observed for children of overweight and obese mothers [7]. Xiang et al. found that the timing of
GDM diagnosis influenced the risk of ASD, with an increased risk observed for GDM diagnosed before
the 26th week of pregnancy (OR = 1.62, 95% CI [1.44, 1.82]), while no significant association was noted
for diagnoses occurring later in pregnancy [15]. Gender differences were also noted as male offspring

showed a notably larger risk of ASD in the presence of in-utero GDM exposure [9].

Several other studies discussed potential pathogenic mechanisms underlying the association. Key
mechanisms identified include oxidative stress, inflammation, and epigenetic changes, which may alter
neurodevelopment [16-18]. Oxidative stress associated with hyperglycemia can adversely affect fetal brain
development [16]. Furthermore, maternal inflammation and immune dysregulation have been identified
as significant factors that could contribute to neurodevelopment in children whose mothers experienced
GDM [17, 18].

Overall, the evidence supports a mild to moderate increase in ASD risk associated with GDM, influenced

by various factors including the time of diagnosis, maternal BMI, and underlying pathogenic mechanisms.

44. Association Between GDM and ASD Risk

Studies indicate a notable connection between GDM and an elevated risk of autism in offspring [7, 8].
This relationship is supported by multiple studies, though variability in study design and methodology
leads to differing conclusions. The pooled estimates from meta-analyses indicate that GDM is associated
with a moderate elevation in the risk of autism. Rowland et al. reported a pooled OR of 1.42 (95% ClI
[1.22, 1.65]) [8], while Xu et al. reported the pooled Relative Risk (RR) as 1.43 (95% CI [1.13, 1.79]) [9]. These
findings suggest that children exposed to GDM during their intrauterine lives have a 42% to 43% higher
risk of developing ASD in comparison to those not exposed. In addition, Liu et al. reported a significantly
higher risk of ASD [10], while Vui et al. observed a strong association with an OR of 7.7 (95% CI [3.5,
16.9]) in a cross-sectional study [11]. These differences may reflect specific population or methodological
characteristics such as varying diagnostic criteria or inclusion of additional risk factors.

Conversely, Cordero et al. calculated an adjusted OR of 1.1(95% CI[0.77, 1.53]), suggesting the absence
of a significant association between any form of diabetes during pregnancy and ASD [13]. The relatively
small number of GDM cases within the sample might have limited their ability to detect a significant

association. Similarly, Chen et al. observed that while high glucose levels early in pregnancy were initially
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associated with ASD, the association lost its significance after statistical adjustments were applied[14]. The
study’s small number of GDM cases (n=219) may have resulted in insufficient statistical power to sustain
significant findings after correction for multiple comparisons. Additionally, the focus on early glucose
levels rather than comprehensive measures of glycemic control may have affected the outcome.
Overall, the majority of studies support a moderate increase in ASD risk associated with GDM, with
RRs reported around 1.43 in the available literature. These measures, while reflecting different aspects
of the association, collectively suggest that GDM elevates the chances of autism in offspring, though the
strength of the association may vary depending on study design and population characteristics [19, 20].
Table 1 and Figure 2 display a summary of studies assessing the association of GDM with ASD, while
additional factors influencing this association are discussed in subsequent sections of this review.

Table 1: Summary of studies assessing the association between GDM and ASD.

No. Authorand Study design Country Sample size Ascertainment of Ascertainment of Findings
year GDM diagnosis  ASD diagnosis
1. Kong et al.,  Retrospective Finland GDM cases = Diagnosis from Diagnosis from HR of ASD
2020 [7] cohort study 98,242 medical records  medical records  separated by BMI
Control = (HILMO): ICD-10  (HILMO): ICD-F84 of diabetic
541133 code 024.4 mothers:

- Overweight: 1.28
(95% CI [1.07, 1.53])

- Obese: 1.57
(95% CI [1.26, 1.95]
2. Rowland et  Systematic Countries in  Total Self-report, report Self-report, report GDM is
al., 2021[8] review and North participants = from medical from medical associated with
meta-analysis America, 932,655 professionals or  professionals or  increased risk of
Europe, (GDM = medical records  medical records  ASD in offspring,
MENA, South 51,370; ASD = pooled OR =1.42
Asia, and 512) (95% CI [1.22; 1.65]
East Asia
3. Xu et al,, Systematic China/United Total The diagnosis of The ICD-9 or Maternal diabetes
2014 [9] review and States participants = maternal diabetes |ICD-10 criteria is associated with
meta-analysis 784,056 was made based were used in five increased risk of
(ASD = 5885) on ICD codes in  studies; ADI-R ASD, pooled RR =
six studies. In the and ADOS in four 1.43 (95% CI [1.13,
remaining studies, studies; DSM-IV-R 1.79])
the diagnostic and CARS in
criteria were not  three studies
specified
4. Liu et al., Retrospective  United States GDM cases = Diagnosis from Diagnosis from GDM is
2024 [10] cohort study 1417 medical records: medical records: associated with
Control = ICD-9: 648.8x and ICD-10: F84.x increased risk of
13,063 ICD-10: 0O24.4x except F84.2x, ASD in offspring,
F84.3x and ICD-9: adjusted HR =
299.x except 3.16 (95% CI [1.36,
299.1x 7.37))
5. Vui et al., Cross-sectional Vietnam Total Face-to-face Children were Having GDM, or
2023 1] study participants = interviews with screened using high blood
42,551 (ASD mother/father or  M-CHAT, then pressure or
=302) caregiver diagnosis pre-eclampsia

confirmed using  during pregnancy
DSM-IV criteria by were consistently
pediatric associated with
neurologist ASD, OR =77
(95% [CI 3.5, 16.9])
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Table 1: Continued.

No. Authorand Studydesign Country Sample size Ascertainment of Ascertainment of Findings
year GDM diagnosis ASD diagnosis
6. Chen et al., Retrospective  Taiwan GDM cases = Diagnosis from Diagnosis from Calculated OR =
2022 [12] cohort study 90,200 medical records:  medical records:  1.30 (95% CI [1.24,
Control = ICD-9 codes ICD-9: 299 1.37))
787,033 648.0 (diagnosis is
based on 50-g
oral glucose
tolerance test
between 24-28
weeks)
7. Cordero et al., Case-control United States ASD cases = Prenatal medical Screened using Any diabetes
2019 [13] study 698 record or maternal the Social during pregnancy
Non-ASD DD self-report Communication was not
=887 Questionnaire, associated with
Control = 979 assessment by ASD. AOR =110
ADOQOS, caregivers (95% CI[0.77, 1.56])
completed ADI-R
8. Chen et al., Retrospective  Sweden GDM cases = Not specified Diagnosis from High glucose
2023 [14] cohort study 219 medical records levels in early
No GDM = and ICD-10 code  pregnancy were
76,009 F84 associated with
Autism and ADHD,
though these
associations did
not remain
significant after
adjusting for FDR
correction due to
small sample size
9. Xiang et al., Retrospective  United States GDM cases Not specified Not specified GDM diagnosed
2018 [15] cohort study (<26 weeks) by 26 weeks of
=11,922 gestation had risk
GDM cases of ASD in
(>26 weeks) offspring,
= 24,505 Calculated OR =
Control = 1.62 (95% CI [1.44,
372,924 1.82))
10. Liu et al,, Case-control China ASD cases = Maternal Diagnosed by GDM is associated
2023 [26] study 221 self-report senior doctors in  with increased risk
Control = 400 neurology of ASD in
department using offspring, OR =
DSM-5 criteria 2.18 (95% CI [1.04,
4.54))
. Mahboub et  Case-control Saudi Arabia ASD cases = Questionnaire Interview with GDM increases
al.,, 2023 [47] study 103 mothers the risk of
Control = 567 developing ASD

by three times
with p<0.05, OR =
3.1 (95%Cl
[1.7-5.4)

GDM = Gestational diabetes mellitus, ASD = Autism spectrum disorder, DD = Developmental delay, ICD = International classification
of diseases, OR = Odds ratio, ADOS = Autism diagnostic observation schedule, ADI-R = Autism diagnostic interview-revised, HILMO:
Finnish care registers for health care, Cl = Confidence interval, MENA = Middle East and North Africa, HR = Hazard ratio, BMI =
Body mass index, aOR = Adjusted odds ratio, RR = Risk ratio, M-CHAT= Modified checklist for autism in toddlers, DSM = Diagnostic
and statistical manual of mental disorders, ADHD = Attention deficit hyperactivity disorder, FDR = False discovery rate.
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Study  Sample size Effect Size [95% CI]
Kongetal. 2020 639375 - 1.06[0.88,1.29]
Rowland et al. 2021 932655 — 1.42[1.22,1.65]
Xuetal. 2014 784056 - 1.43[1.138,1.79]
Liu et al. 2024 14480 L 3.16[1.36,7.37]
Vuietal. 2023 42551 ' L] » 7.70[3.50,16.90]
Chenetal.2022 877203 L 1.30[1.24,1.37]
Cordero etal. 2019 2564 - 1.10[0.77,1.56]
Xiangetal.2018 409351 . 1.62[1.44,1.82)
Liuetal. 2023 621 ' L] | 2.18[1.04,4.54]
Mahboub et al. 2023 670 —_— 3.10[1.70,5.40]
0.37 1.00 2.70 7.28

Effect Size

Figure 2: Comparison of study effect sizes (Cl = Confidence interval).

41.1. Timing of GDM Diagnosis and ASD Risk

The timing of GDM diagnosis plays a crucial role in ASD risk. Studies indicate that the risk of ASD decreases
with a later diagnosis of GDM [21]. Women diagnosed with GDM by the 26" week of pregnancy exhibit
1.42 times higher chance of having children with ASD [1]. Elevated hemoglobin Alc levels (>6.5%) in
early gestation further correlates with an increased autism risk [10]. This suggests that early and more
severe hyperglycemia during pregnancy has a larger impact on fetal brain development. Population-
based studies consistently show that maternal diabetes, whether type 1, type 2, or GDM diagnosed by
the 26" week of pregnancy, is linked to an elevated risk of ASD in offspring [1, 22, 23]. However, diabetes
diagnosed after the 26" week of pregnancy does not significantly increase autism risk. This suggests
that the severity of the disease and its timing of onset during pregnancy are important determinants of
this relationship [24]. The interaction of these factors with maternal glycemia, autoimmune conditions,
genetic predispositions, prematurity, and neonatal hypoglycemia requires further investigation [13]. A
meta-analysis reinforced the significant association between maternal diabetes and increased ASD risk
[25]. A cross-sectional study in Vietnam identified GDM as one of the five perinatal factors associated
with an autism RR of 1.48 (95% ClI [1.26, 1.75]) [11, 15]. Another study revealed that the combination of
obesity and chronic diabetes resulted in a significantly higher risk of offspring ASD [17], emphasizing the

compounded impact of these maternal health conditions [17].

41.2. Co-existing Complications

Maternal body mass index (BMI) is another critical factor that exacerbates the ASD risk in children with
prenatal exposure to GDM [17]. Severe obesity combined with diabetes during pregnancy creates a notably

higher risk of ASD than either condition alone [26]. This increased risk is likely due to the enhanced
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exposure of neurons to oxidative stress, lipotoxicity, increased blood glucose, and insulin resistance,
as well as inflammation in cases of severe obesity with concurrent diabetes [14]. Resistance to insulin
increases progressively during gestation to ensure that the growing fetus receives enough carbohydrates.
This process is associated with increased post-meal glucose levels, greater secretion of insulin both at
rest and in response to food intake, and increased glucose production by the liver [27]. These metabolic
changes are exacerbated if the pregnant woman is diabetic, obese, or both. This results in increased
placental glucose transfer, cytokine release, and fetal insulin secretion, potentially leading to adverse
outcomes for the fetus [28]. Women with GDM exhibit elevated risks for other obstetric complications,
including pre-eclampsia, preterm delivery, fetal macrosomia, cesarean delivery, and perinatal mortality
[28-30]. These complications can further influence the offspring’s neurodevelopmental outcome [8]. It has
been demonstrated that prenatal and perinatal factors significantly influence the clinical manifestation
of ASD [31]. A prospective national cohort study from the Nurses’ Health Study Il found that females
who developed pregnancy complications, particularly toxemia and GDM, were more prone to have
their children diagnosed with ASD [32]. These findings emphasize the importance of early and effective

management of GDM to mitigate long-term neurodevelopmental risks [33].

41.3. Gender-specific Susceptibility to ASD

The gender of the offspring also interacts with GDM exposure in influencing ASD risk [34]. A case-control
study concluded that male children of mothers with GDM exhibited a notably elevated ASD risk (OR=3.67,
95% CI[1.16, 11.65], p-value (probability value) =0.028) [35]. The gender-specific susceptibility underscores
the need for more nuanced research into how maternal metabolic conditions impact male and female

fetuses differently [9].

41.4. Impact on Fetal Neurodevelopment

The developmental impact of GDM on ASD is a critical area of research, as maternal glucose intolerance in
pregnancy is linked to alterations in fetal brain development and subsequent neurobehavioral outcomes.
GDM onset, typically during the latter half of pregnancy, coincides with critical periods of fetal cerebral
cortex development and postnatal development [36, 37]. GDM diagnosed before the 26" week of
pregnancy has been associated with an increased ASD risk, while diagnosis after the 26™ week shows no
such association [1, 31, 32, 38]. This finding indicates that hyperglycemia during this critical developmental
period can adversely affect the development of the nervous system. A study assessed the influence of
diabetes on mice offspring by inducing diabetes with streptozotocin injections and compared the results
to a control group. Male offspring from diabetic mothers showed reduced mobility, increased repetitive
behaviors, and fear-related freezing, while females did not exhibit these signs. Maternal glucose levels

correlated positively with these behaviors in males. Additionally, specific genes were dysregulated in
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their cortices and striatums such as bhlhe22 (basic helix-loop-helix family member E22) and Ndel (nudE
neurodevelopment protein 1) [34]. Bhlhe22 is known to play a role in cortical development and the
establishment of neuronal circuits [34]. These findings suggest that maternal GDM may contribute to
specific behavioral alterations in offspring, particularly in males, with the severity potentially linked to

maternal glucose levels.

4.2. GDM and Its Pathophysiological Impact on ASD

GDM has been associated with alterations in neurological development, impairments in fine and gross
motor skills and cognitive function, and increased learning difficulties. The underlying mechanisms are
complex, involving epigenetic changes, increased oxidative stress in the fetus, and chronic neuroin-
flammation [6]. Figure 3 summarizes the possible mechanisms during the prenatal period that may be

implicated in the development of autism in children born to diabetic mothers.

‘ Hyperglycemia ‘

[+ Oxidative ‘ Modified Glucose

stress Epigenetic Modifications

Inflammation Immune Dysregulation
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serum inflammatory
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Figure 3: Diagrammatic representation of the possible mechanisms during the perinatal period that may lead to the development
of autism in the offspring of diabetic mothers (ROS = Reactive oxygen species, mTOR = mammalian Target of rapamycin, DNA =
Deoxyribonucleic acid, CNS = Central nervous system, OR2L13 = Olfactory receptor family 2 subfamily L member 13 (OR2L13),
SLC6A4 = Solute carrier family 6 member 4, DHA = Docosahexaenoic acid).

4.21. Oxidative Stress

Some studies indicate that oxidative stress, a common feature of GDM, may contribute to neurodevel-

opmental disorders like ASD [16]. Hyperglycemia triggers a series of chemical reactions that produce an
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excess of reactive oxygen species (ROS). Excessive ROS can overwhelm the body’s antioxidation capacity,
resulting in oxidative stress as they interact with various body tissues [30]. Maternal hyperglycemia can
compromise antioxidant defense mechanisms and enhance the production of free radicals [16]. These
changes may contribute to an increased oxidative stress burden in both cord blood and placental tissue
[16]. In embryos, oxidative stress can damage DNA (deoxyribonucleic acid) across various cell types,
including those in the central nervous system, potentially leading to long-lasting neurodevelopmental
impairments [30].

Oxidative stress not only increases lipid peroxidation but also alters the regulation of genes linked
to perinatal complications [39]. Additionally, it disrupts methylation processes, which can contribute to
neurological issues by reducing the capacity for methylation [39]. Research has identified elevated levels
of oxidative stress markers, such as 3-nitrotyrosine (3-NT) and neurotrophin-3 (NT-3), in specific brain

regions, particularly the cerebellum, in patients with ASD [37, 39].

Oxidative stress also disrupts pathways responsible for breaking down harmful metabolic byproducts,
potentially causing mitochondrial dysfunction and impacting fetal brain development [30]. One critical
pathway affected is the Glo1-methylglyoxal pathway, essential for metabolizing methylglyoxal, a byproduct
of glucose metabolism associated with diabetes. When oxidative stress impairs Glo1 enzyme’s ability to
neutralize methylglyoxal, elevated levels of this compound can damage neural progenitor cells (NPCs)
during embryonic development, leading to alterations in the structure and function of the brain [39].
Experimental studies have demonstrated that increasing Glo1 expression can mitigate the harmful effects
of elevated methylglyoxal on NPCs. These disruptions in embryonic NPC development may result in
premature neurogenesis and depletion of NPC pools, potentially affecting brain development through-
out adulthood [33]. Understanding this pathway could lead to interventions to improve outcomes for

individuals affected by maternal metabolic disorders.

The mammalian Target of Rapamycin (MTOR) pathway might also be implicated in the pathogene-
sis of neurodevelopmental disorders through oxidative stress [16]. mTOR is a crucial serine-threonine
kinase which regulates essential cellular functions. Besides its role in regulating carbohydrate and lipid
metabolism, mTOR also plays a vital role in synaptic plasticity and autophagy inhibition [16]. Dysregulation
of mTOR has been identified in various neurodevelopmental diseases such as ASD [37, 40-45]. Activation
of mMTOR was observed in ASD patients, leading to the inhibition of autophagy and failure to eliminate

the redundant synapses in the central nervous system [37, 44].

4.2.2. Epigenetic Modifications

Hyperglycemia can affect epigenetic modifications in offspring, including decreased DNA methylation,
commonly observed in neurodevelopmental diseases such as ASD, however the current evidence is still

sparse [9]. A meta-analysis of epigenome-wide association studies (EWAS) uncovered distinct methylation
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patterns linked to GDM particularly in two genomic regions: the promoter region of the OR2L13 gene
(olfactory receptor family 2 subfamily L member 13) and the gene body of CYP2ET (cytochrome p450
family 2 subfamily E member 1) [18]. Lower methylation levels were observed in these regions among
newborns exposed to GDM. The ORZ2L13 gene, responsible for encoding an olfactory receptor, exhibited
differential methylation of the same CpG site in both blood and buccal cells from individuals with
ASD [18]. Although the exact mechanism remains unknown, research suggests a correlation between
olfactory dysfunction and more severe social impairments in ASD individuals [45, 46]. Further investigation
is needed to explore the potential role of OR2L13 in mediating the relationship between GDM and

neurodevelopment.

Serotonin, also known as 5-hydroxyptamine or 5HT, contributes significantly to the embryonic devel-
opment through the regulation of various pathways, including the formation of the serotonergic system
[47]. Disruptions in serotonin balance during prenatal or early postnatal stages can increase the infant’s
vulnerability to conditions like autism, depressive disorders, and other mental health disorders later
in life [46]. Before the fetal brain starts synthesizing serotonin, the placenta serves as an important
producer of this neurotransmitter [48]. A study investigated the relationship between maternal glucose
metabolism during pregnancy, placental serotonin transporter SLC6A4 (solute carrier family 6 member
4) gene methylation, and gene expression [49]. The research revealed that glucose variations associated
with GDM impact fetal SLC6A4 gene methylation, resulting in lower methylation levels and higher gene
expression in placentas from GDM pregnancies [49]. This suggests that maternal glucose dysregulation
influences serotonin transport in the placenta through alterations in SLC6A4 methylation, indicating a

significant role of epigenetic mechanisms in regulating the expression of placental SLC6A4.

4.2.3. Inflammation

ASD often exhibits elevated concentrations of proinflammatory cytokines in the peripheral blood which
suggests a connection between inflammation and ASD [29]. Epidemiological studies found that individuals
with GDM have increased circulating serum inflammatory factor levels compared to women without GDM
[29]. GDM can induce a state of chronic hypoxic stress and inflammation in the placenta. Excessive adipose
tissue, often observed in Type 2 Diabetes Mellitus (T2DM) and GDM, is recognized for its role in inducing
chronic inflammation [9]. A study performed in 2018 presented neurophysiological evidence indicating
that exposure to GDM during pregnancy is linked to reduced cortical excitability and neuroplasticity in
offspring at 11-13 years old. Interestingly, maternal perinatal factors, particularly insulin resistance and
inflammation, were strongly associated with these neurophysiological outcomes [17]. In another study,
elevated cortisol levels seen in pregnant women with impaired glucose tolerance or GDM were shown to

increase serotonin transporter (SERT) levels, disrupting serotonin signalling [22].
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4.2.4. Immune Dysregulation

Specific autoantibodies targeting fetal brain proteins were detected in approximately 23% of women
with children diagnosed with ASD, compared to 1% of those with neurotypical offspring [50]. These
autoantibodies were connected to more severe forms of stereotyped behaviors and expressive language
deficits in ASD children [51]. Research has shown that mothers of children with ASD, particularly those
who faced metabolic complications during pregnancy, may produce autoantibodies targeting fetal brain
proteins, given that these antigens have been detected in maternal blood [21]. Mothers diagnosed with
diabetes during pregnancy were almost three times more likely to develop these autoantibodies than non-
diabetic mothers. The association was stronger between diabetes and positive antibodies when women
with chronic conditions like T2DM were excluded [21]. This suggests that GDM may alter maternal immune
tolerance, resulting in the production of autoantibodies that target fetal brain proteins [21]. The anti-fetal
brain autoantibodies were found to be associated with a functional polymorphism in the mesenchymal
epithelial transition factor (MET) gene. The associated polymorphism is linked to reduced expression
of the MET receptor tyrosine kinase, which may induce susceptibility to immune dysregulation [52, 53].

Additionally, several animal studies have linked disruptions in MET signaling to GDM [54, 55].

4.2.5. Modified Glucose Homeostasis

Docosahexaenoic acid (DHA) plays an essential role in fetal growth and development [56]. Its selective
transfer across the placenta may be altered in GDM due to disrupted glucose metabolism [56]. An in-vitro
study demonstrated that exposure of trophoblasts to increased glucose and insulin, mimicking insulin
resistance, was associated with suppressed expression of Sirtuin 1 (SIRT1), a regulator of lipid metabolism,
and subsequently a decreased DHA transfer across trophoblasts [57]. A prospective study revealed that
cord DHA levels of offspring of GDM mothers were significantly lower than those of the control group.
Additionally, these offspring exhibited significantly lower psycho-motor and mental scores when assessed
using the Bayley Scale of Infant Development Il (BSID Il) compared to controls [58]. In conclusion, while
there is growing evidence linking GDM to an increased risk of ASD in offspring, the exact mechanisms

involved are complex and multifactorial [16].

4.3. Pediatric Implications

The association between GDM and ASD has important implications for pediatric practice. Recognizing
that children born to GDM mothers may be at an elevated risk for ASD underscores the significance of
integrating early developmental screening into routine pediatric check-up. Pediatricians should consider
using screening tools such as the Modified Checklist for Autism in Toddlers (M-CHAT) to identify potential

developmental delays early [59]. Early detection allows for timely and targeted interventions, which are
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crucial for optimizing developmental outcomes. Interventions tailored to the unique needs of children with
prenatal GDM exposure might involve early behavioral therapies, speech and language interventions, and
occupational therapy [60]. Additionally, educating parents about the potential risks and signs of ASD and
providing resources for support may significantly benefit families. Understanding the broader context of
maternal health and ensuring effective management of GDM during pregnancy might reduce the risks of
ASD [10]. Public health initiatives should focus on early screening and education for expectant mothers
and promote optimal GDM management to mitigate potential developmental issues. Overall, integrating
these practices into pediatric care may potentially improve outcomes for children at risk of ASD due to
prenatal GDM exposure, highlighting the need for continued research and interdisciplinary collaboration

to address these challenges effectively.

4.4. Limitations

While this review offers a thorough examination of the association between GDM and ASD, several
limitations should be considered. The review’s reliance on diverse study designs and differing statistical
metrics to report effect sizes may limit direct comparability. Additionally, the unavailability of raw data
in some studies prevented the calculation of a single standardized effect size metric across all studies.
Many of the included studies used retrospective cohort or case-control designs which, while valuable,
are susceptible to biases and may not capture the full complexity of the association between GDM and
ASD. Additionally, the variability in the diagnostic criteria for both GDM and ASD across studies can affect
the consistency and generalizability of the results. Some studies had small sample sizes or limited data
on glycemic control, which may have influenced the observed associations. Despite these challenges,

this review provides a comprehensive narrative that highlights key trends and potential mechanisms.

In conclusion, evidence indicates that GDM may heighten the chance of an offspring developing autism
and is influenced by factors such as the timing of GDM diagnosis, its management strategies, and maternal
health conditions during pregnancy. Early diagnosis of GDM (before the 26th week) and medication-
treated GDM particularly appear to be associated with higher ASD risks, suggesting a potential impact of
prolonged hyper-glycemic exposure and pharmacological interventions on early fetal neurodevelopment.
Maternal obesity, pre-eclampsia, and gender-specific susceptibility further increase these risks. Under-
standing the pathogenetic pathways involving epigenetic modifications and mitochondrial dysfunction

provides critical insights into how metabolic disorders in pregnancy can disrupt fetal neurodevelopment.
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