West Kazakhstan Medical Journal
ISSN: 2707-6180 (Print) 2707-6199 (Online)
Pioneering research advancing the frontiers of medical knowledge and healthcare practices.
Nutritional Benefits of Saccostrea cucullata: Potential Role in Human Health
Published date: Dec 20 2024
Journal Title: West Kazakhstan Medical Journal
Issue title: West Kazakhstan Medical Journal: Volume 66 Issue 4
Pages: 343 - 364
Authors:
Abstract:
Saccostrea cucullata, a species of bivalve mollusk native to the Persian Gulf, is highly prized for its nutritional richness and rapid growth, making it a valuable species for aquaculture. Despite its abundance and potential in the Persian Gulf, the aquaculture industry has faced challenges due to limited understanding of its biology and genetics. This review consolidates current knowledge on the life cycle, reproduction, and environmental factors influencing the growth and nutritional quality of Saccostrea cucullata. It examines the impact of climate variations and identifies key challenges. Strategies such as closed-system cultivation, selective breeding, and genetic enhancement aimed at producing triploid oysters are discussed, focusing on improving desirable traits such as growth rate, disease resistance, and nutritional content. Enhancing these aspects can lead to increased production of nutrient-rich Saccostrea cucullata, thereby advancing the nutritional benefits and sustainability of aquaculture.
Keywords: food security, minerals, nutritional value, omega-3 fatty acids, oysters, Saccostrea cucullata, vitamins
References:
[1] Pakhmode, P. K., Mohite, S. A., Takar, S., & Gurjar, U. R. (2021). Reproductive biology of rock oyster, Saccostrea cucullata (Born, 1778) along Aare-Ware rocky shore of Ratnagiri, Maharashtra, India.
[2] Ghaffari, H., Ahmadzadeh, F., Saberi-Pirooz, R., & Abtahi, B. (2022). A molecular phylogeny of the Persian Gulf and the Gulf of Oman oyster species. Biological Journal of the Linnean Society, 137(4), 626-641.
[3] Wijsman, J. W. M., Troost, K., Fang, J., & Roncarati, A. (2019). Global production of marine bivalves. Trends and challenges. Goods and services of marine bivalves, 7-26.
[4] Howie, A. H., & Bishop, M. J. (2021). Contemporary oyster reef restoration: Responding to a changing world. Frontiers in Ecology and Evolution, 9, 689915.
[5] Chowdhury, M. S. N., Wijsman, J. W., Hossain, M. S., Ysebaert, T., & Smaal, A. C. (2019). A verified habitat suitability model for the intertidal rock oyster, Saccostrea cucullata. PloS one, 14(6), e0217688.
[6] Wright, A. C., Fan, Y., & Baker, G. L. (2018). Nutritional value and food safety of bivalve molluscan shellfish. Journal of Shellfish Research, 37(4), 695-708.
[7] Lodeiros, C., Valentich-Scott, P., Chávez-Villalba, J., Mazón-Suástegui, J. M., & Grijalva-Chon, J. M. (2020). Tropical and subtropical Ostreidae of the American Pacific: taxonomy, biology, ecology, and genetics. Journal of Shellfish Research, 39(2), 181-206.
[8] Zuykov, M., Pelletier, E., & Harper, D. A. (2013). Bivalve mollusks in metal pollution studies: from bioaccumulation to biomonitoring. Chemosphere, 93(2), 201-208.
[9] Rezaei Marnani, H., Sanjabi, B., Rameshi, H., Ranaei Rad, E., Dianat, S., & Ghanbarzade, H. (1994). Distribution of benthic molluscs in shallow waters around some Iranian Islands in the Persian Gulf.
[10] Racuyal, J. T., Mabonga, D. A., & Roncesvalles, E. R. (2016). Rock mounds as rock oyster (Saccostrea cucullata von Born, 1778) bed in an intertidal zone.
[11] Kalbassi, M. R., Abdollahzadeh, E., & Salari-Joo, H. (2013). A review on aquaculture development in Iran. Ecopersia, 1(2), 159-178
[12] Fakhri, A., Nabavi, S. M. B., Hoseini, S. J., Zolgharnein, H., & Archangi, B. (2020). Molecular phylogeny of rocky oyster (Saccostrea) in the northern part of Persian Gulf. Journal of Animal Environment, 12(3), 415-420.
[13] Bhattacharyya, S., Panigrahi, A., Mitra, A., & Mukherjee, J. (2010). Effect of physico-chemical variables on the growth and condition index of the rock oyster, Saccostrea cucullata(Born) in the Sundarbans, India. Indian Journal of Fisheries, 57(3), 13-17.
[14] Joseph, M. M. (1998). Mussel and oyster culture in the tropics. In Tropical Mariculture (pp. 309-360). Academic Press.
[15] Nowland, S. J. (2019). Developing hatchery culture techniques for the black-lip rock oyster, Saccostrea echinata, to support Aboriginal economic development in northern Australia (Doctoral dissertation, University of the Sunshine Coast).
[16] Yang, Q., Li, A., Wang, L., Cong, R., Yang, J., Zhang, G., ... & Li, L. (2023). Shell characterization and effects on cavity volume of wild Jinjiang oyster Crassostrea ariakensis in different estuaries of China. Journal of Oceanology and Limnology, 41(5), 2020-2031.
[17] Thomson, J. M. (1954). The genera of oysters and the Australian species. Marine and Freshwater Research, 5(1), 132-168.
[18] Day, A. J., Hawkins, A. J. S., & Visootiviseth, P. (2000). The use of allozymes and shell morphology to distinguish among sympatric species of the rock oyster Saccostrea in Thailand. Aquaculture, 187(1-2), 51-72.
[19] Chueachat, P., Tarangkoon, W., & Tanyaros, S. (2018). A comparative study on the nursery culture of hatcheryreared sub-adult cupped oyster, Crassostrea iredalei (Faustino, 1932), in an earthen pond and a mangrove canal. Fisheries & Aquatic Life, 26(4), 217-222.
[20] Fakhrina, M. N., Christianus, A., & Ehteshamei, F. (2018). Production of tropical oyster seed in hatchery. Journal of Survey in Fisheries Sciences, 7-19.
[21] Kim, B. K., Kang, D. H., Ko, D. K., Yang, H. S., Kim, D. K., Kang, C. K., & Choi, K. S. (2010). Annual reproductive cycle of the oyster, Saccostrea kegaki (Torigoe & Inaba 1981) on the southern coast of Jeju island, Korea. Invertebrate Reproduction & Development, 54(1), 19-26.
[22] Thanormjit, K., Chueycham, S., Phraprasert, P., Sukparangsi, W., & Kingtong, S. (2020). Gamete characteristics and early development of the hooded oyster Saccostrea cuccullata (Born, 1778). Aquaculture reports, 18, 100473.
[23] Kakoi, S., Kin, K., Miyazaki, K., & Wada, H. (2008). Early development of the Japanese spiny oyster (Saccostrea kegaki): characterization of some genetic markers. Zoological science, 25(5), 455-464.
[24] Sukumar, P., & Mohan Joseph, M. (1988). Larval development of the rock oyster Saccostrea cucullata (von Born). In The First Indian Fisheries Forum. Proceedings (pp. 255-258). Asian Fisheries Society.
[25] Nowland, S. J., O’connor, W., & Southgate, P. C. (2018). Embryonic, larval, and early postlarval development of the tropical black-lip rock oyster Saccostrea echinata. Journal of shellfish research, 37(1), 73-77.
[26] Lee, H. J., Kang, H. S., Jeung, H. D., Hong, H. K., & Choi, K. S. (2013). First observation on the early embryonic and larval development of spiny oyster Saccostrea kegaki Torigoe & Inaba, 1981 (Bivalvial: Ostreoida) using scanning electron microscope on the north coast of Jeju, Korea. The Korean Journal of Malacology, 29(2), 97-103.
[27] Wassnig, M., & Southgate, P. C. (2012). Embryonic and larval development of Pteria penguin (Röding, 1798)(Bivalvia: Pteriidae). Journal of Molluscan studies, 78(1), 134-141.
[28] Laing, I., & Bopp, J. (2009). Oysters–Shellfish Farming. Encyclopedia of ocean sciences, 2nd edn. Academic Press, Oxford, 274-286.
[29] Hamli, H., Idris, M. H., Hena, M. K. A., & Rajaee, A. H. (2019). Fisheries Assessment, Gametogenesis and Culture Practice of Local Bivalve: A Review. Pertanika Journal of Tropical Agricultural Science, 42(1).
[30] Doinsing, J. W., & Ransangan, J. (2022). An overview of the life cycle, reproduction and factors influencing recruitment success of tropical oysters. Egyptian Journal of Aquatic Biology and Fisheries, 26(3), 1-29.
[31] Nalesso, R. C., Paresque, K., Piumbini, P. P., Tonini, J. F. R., Almeida, L. G., & Níckel, V. M. (2008). Oyster spat recruitment in Espírito Santo State, Brazil, using recycled materials. Brazilian Journal of Oceanography, 56, 281-288.
[32] Funo, I. C. D. S. A., Antonio, Í. G., Marinho, Y. F., Monteles, J. S., Lopes, R. G. P. S., & Gálvez, A. O. (2019). Recruitment of oyster in artificial collectors on the Amazon macrotidal mangrove coast. Ciência Rural, 49, e20180482.
[33] O’Connor, W., Dove, M., Finn, B., & O’Connor, S. (2008). Manual for Hatchery Production of Sydney Rock Oysters (Saccostrea glomerate). Aquaculture, 99, 277-284.
[34] Knauer, J., & Southgate, P. C. (1999). A review of the nutritional requirements of bivalves and the development of alternative and artificial diets for bivalve aquaculture. Reviews in Fisheries Science, 7(3-4), 241-280.
[35] Helm, M. M., Bourne, N., and Lovatelli, A. 2004. Hatchery culture of bivalves. Food and Agriculture Organization of the United Nations, Rome. 203 pp
[36] Nowland, S. J., O’Connor, W. A., Penny, S. S., Osborne, M. W., & Southgate, P. C. (2019). Water temperature and salinity synergistically affect embryonic and larval development of the tropical black-lip rock oyster Saccostrea echinata. Aquaculture International, 27, 1239-1250.
[37] Fang, A. N. P., Peng, T. C., Yen, P. K., Yasin, Z., & Hwai, A. T. S. (2016). Effect of salinity on embryo and larval development of oyster Crassostrea iredalei. Tropical Life Sciences Research, 27(supp1), 23.
[38] Wang, T., Li, Q., Zhang, J., & Yu, R. (2018). Effects of salinity, stocking density, and algal density on growth and survival of Iwagaki oyster Crassostrea nippona larvae. Aquaculture International, 26, 947-958.
[39] Nowland, S. J., O’Connor, W. A., & Southgate, P. C. (2019). Optimizing stocking density and microalgae ration improves the growth potential of tropical black-lip oyster, Saccostrea echinata, larvae. Journal of the World Aquaculture Society, 50(4), 728-737.
[40] Tarnecki, A. M., Cleveland, A., Capps, M., & Rikard, F. S. (2024). Growth of Oyster (Crassostrea virginica) Larvae in Small-Scale Systems Using an Algae Concentrate Food Source. Aquaculture Research, 2024.
[41] Leonhardt, E. R. (2013). Monitoring the survival of hatchery-produced spat and larvae on Louisiana public oyster reefs. Louisiana State University and Agricultural & Mechanical College.
[42] Hadley, N. H., & Whetstone, J. M. (2007). Hard clam hatchery and nursery production. Southern Regional Aquaculture Center, Publication, 4301.
[43] Ellis, S. (2000). Nursery and grow-out techniques for giant clams (Bivalvia: Tridacnidae) (p. 99). Waimanalo, Hawaii, USA: Center for Tropical and Subtropical Aquaculture.
[44] Chavez-Villalba, J., Mazon-Suastegui, J. M., Maeda-Martínez, A. N., García-Morales, R., & Lodeiros, C. (2021). Tropical and subtropical Ostreidae of the American Pacific: fisheries, aquaculture, management, and conservation. Journal of Shellfish Research, 40(2), 239-253.
[45] Garrison, R. (2003). A Review of Open-water Production Systems, Engineering and Technology.
[46] Munroe, D., Bushek, D., Woodruff, P., & Calvo, L. (2017). Intertidal rack-and-bag oyster farms have limited interaction with horseshoe crab activity in New Jersey, USA. Aquaculture Environment Interactions, 9, 205-211.
[47] Canty, R., Blackwood, D., Noble, R., & Froelich, B. (2020). A comparison between farmed oysters using floating cages and oysters grown on-bottom reveals more potentially human pathogenic Vibrio in the on-bottom oysters. Environmental microbiology, 22(10), 4257-4263.
[48] Rankin, C., Moltschaniwskyj, N., Morton, J., & Wilkie, E. (2018). Shell shape and meat condition in selectively bred Sydney rock oysters, Saccostrea glomerata (Gould, 1850): The influence of grow-out methods. Aquaculture research, 49(3), 1189-1199.
[49] Williamson, T. R., Tilley, D. R., & Campbell, E. (2015). Emergy analysis to evaluate the sustainability of two oyster aquaculture systems in the Chesapeake Bay. Ecological Engineering, 85, 103-120.
[50] Broquard, C., Martinez, A. S., Maurouard, E., Lamy, J. B., & Dégremont, L. (2020). Sex determination in the oyster Crassostrea gigas-A large longitudinal study of population sex ratios and individual sex changes. Aquaculture, 515, 734555.
[51] Chávez-Villalba, J., Soyez, C., Huvet, A., Gueguen, Y., Lo, C., & Le Moullac, G. (2011). Determination of gender in the pearl oyster Pinctada margaritifera. Journal of Shellfish Research, 30(2), 231-240.
[52] Parker, L. M., O’Connor, W. A., Byrne, M., Dove, M., Coleman, R. A., Pörtner, H. O., ... & Ross, P. M. (2018). Ocean acidification but not warming alters sex determination in the Sydney rock oyster, Saccostrea glomerata. Proceedings of the Royal Society B: Biological Sciences, 285(1872), 20172869.
[53] Gavery, M., & Roberts, S. (2018). Genetics & Epigenetics in Life History and Reproduction: Oysters.
[54] Santerre, C., Sourdaine, P., Marc, N., Mingant, C., Robert, R., & Martinez, A. S. (2013). Oyster sex determination is influenced by temperature—first clues in spat during first gonadic differentiation and gametogenesis. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 165(1), 61-69.
[55] Breton, S., Capt, C., Guerra, D., & Stewart, D. (2018). Sex-determining mechanisms in bivalves. Transitions between sexual systems: Understanding the mechanisms of, and pathways between, dioecy, hermaphroditism and other sexual systems, 165-192.
[56] Yasuoka, N., & Yusa, Y. (2017). Direct evidence of bi-directional sex change in natural populations of the oysters Saccostrea kegaki and S. mordax. Plankton and Benthos Research, 12(1), 78-81.
[57] Nowland, S. J., O’Connor, W. A., Penny, S. S., & Southgate, P. C. (2019). Monsoonally driven reproduction in the tropical black-lip rock oyster Saccostrea echinata (Quoy & Gaimard, 1835) in Northern Australia. Journal of shellfish research, 38(1), 89-100.
[58] Padilla-Gami no, J. L., Alma, L., Spencer, L. H., Venkataraman, Y. R., & Wessler, L. (2022). Ocean acidification does not overlook sex: Review of understudied effects and implications of low pH on marine invertebrate sexual reproduction. Frontiers in Marine Science, 9.
[59] Andrew, M. N., O’Connor, W. A., Dunstan, R. H., & MacFarlane, G. R. (2010). Exposure to 17α-ethynylestradiol causes dose and temporally dependent changes in intersex, females and vitellogenin production in the Sydney rock oyster. Ecotoxicology, 19, 1440-1451.
[60] González-Araya, R., Quillien, V., & Robert, R. (2013). The effects of eight single microalgal diets on sex-ratio and gonad development throughout European flat oyster (Ostrea edulis L.) conditioning. Aquaculture, 400, 1-5.
[61] Gonbad, R. G., Salamat, N., Salari, M. A., Sakhaei, N., & Fakhri, A. (2023). The annual gametogenic cycle of the rock oyster, Saccostrea cucullata, from the Persian Gulf. Zoomorphology, 142(2), 137-151.
[62] Maneiro, V., Silva, A., Pazos, A. J., Sánchez, J. L., & Pérez-Parallé, M. L. (2017). Effects of temperature and photoperiod on the conditioning of the flat oyster (Ostrea edulis L.) in autumn. Aquaculture research, 48(8), 4554-4562.
[63] Teaniniuraitemoana, V., Leprêtre, M., Levy, P., Vanaa, V., Parrad, S., Gaertner-Mazouni, N., ... & Le Moullac, G. (2016). Effect of temperature, food availability, and estradiol injection on gametogenesis and gender in the pearl oyster Pinctada margaritifera. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 325(1), 13-24.
[64] Ezgeta Balic, D., Radonic, I., Bojanic Varezic, D., Zorica, B., Arapov, J., Staglicic, N., ... & Segvic-Bubic, T. (2020). Reproductive cycle of a non-native oyster, Crassostrea gigas, in the Adriatic Sea. Mediterranean Marine Science, 21(1), 146-156.
[65] Mafambissa, M., Rodrigues, M., Taimo, T., Andrade, C., Lindegart, M., & Macia, A. (2023). Gametogenic Cycle of the Oysters Pinctada capensis (Sowerby III, 1890) and Saccostrea cucullata (Born, 1778)(Class Bivalvia) in Inhaca Island, Southern Mozambique: A Subsidy for Bivalve Culture in the Region. Diversity, 15(3), 361.
[66] Legat, J. F. A., Puchnick-Legat, A., Sühnel, S., Pereira, A. L. M., Magalh aes, A. R. M., & de Melo, C. M. R. (2021). Reproductive cycle of the mangrove oyster, Crassostrea gasar (Adanson, 1757), in tropical and temperate climates. Aquaculture Research, 52(3), 991-1000.
[67] Vaschenko, M. A., Hsieh, H. L., & Radashevsky, V. I. (2013). Gonadal state of the oyster Crassostrea angulata cultivated in Taiwan. Journal of Shellfish Research, 32(2), 471-482.
[68] Lassoued, M., Damak, W., & Chaffai, A. (2018). Reproductive cycle of the pearl oyster, Pinctada radiata (Mollusca: Pteridae), in the Zarat site (Gulf of Gabès, Tunisia). Euro-Mediterranean Journal for Environmental Integration, 3(1), 18.
[69] Paix ao, L., Ferreira, M. A., Nunes, Z., Fonseca-Sizo, F., & Rocha, R. (2013). Effects of salinity and rainfall on the reproductive biology of the mangrove oyster (Crassostrea gasar): Implications for the collection of broodstock oysters. Aquaculture, 380, 6-12.
[70] Paul, P., Stella, C., & Siva, J. (2021). Biochemical Studies on edible oysters Crassostrea madrasensis and Saccostrea cucullata. Sustainability, Agri, Food and Environmental Research, 9(3).
[71] Sampaio, D. D. S., Santos, M. D. L. S., Tagliaro, C. H., & Beasley, C. R. (2020). Variation in environmental characteristics of waters among Amazon coast oyster culture units. Acta Amazonica, 50, 295-304.
[72] Hyun, K. H., Pang, I. C., Klinck, J. M., Choi, K. S., Lee, J. B., Powell, E. N., ... & Bochenek, E. A. (2001). The effect of food composition on Pacific oyster Crassostrea gigas (Thunberg) growth in Korea: a modeling study. Aquaculture, 199(1-2), 41-62.
[73] Campbell, M. D., & Hall, S. G. (2019). Hydrodynamic effects on oyster aquaculture systems: a review. Reviews in Aquaculture, 11(3), 896-906.
[74] Doney, S. C., Ruckelshaus, M., Emmett Duffy, J., Barry, J. P., Chan, F., English, C. A., ... & Talley, L. D. (2012). Climate change impacts on marine ecosystems. Annual review of marine science, 4, 11-37.
[75] Tan, K., Zhang, H., & Zheng, H. (2020). Selective breeding of edible bivalves and its implication of global climate change. Reviews in Aquaculture, 12(4), 2559-2572.
[76] Parker, L. M., Ross, P. M., & O’CONNOR, W. A. (2009). The effect of ocean acidification and temperature on the fertilization and embryonic development of the Sydney rock oyster Saccostrea glomerata (Gould 1850). Global Change Biology, 15(9), 2123-2136.
[77] Chan, V. B. S., Li, C., Lane, A. C., Wang, Y., Lu, X., Shih, K., ... & Thiyagarajan, V. (2012). CO2-driven ocean acidification alters and weakens integrity of the calcareous tubes produced by the serpulid tubeworm, Hydroides elegans.
[78] Thiyagarajan, V., & Ko, G. W. K. (2012). Larval growth response of the Portuguese oyster (Crassostrea angulata) to multiple climate change stressors. Aquaculture, 370, 90-95.
[79] Nowland, S. J., O’Connor, W. A., Elizur, A., & Southgate, P. C. (2021). Evaluating spawning induction methods for the tropical black-lip rock oyster, Saccostrea echinata. Aquaculture Reports, 20, 100676.
[80] Argüello-Guevara, W., Loor, A., & Sonnenholzner, S. (2013). Broodstock conditioning, spawning induction, and early larval development of the tropical rock oyster Striostrea prismatica (Gray 1825). Journal of Shellfish Research, 32(3), 665-670.
[81] Gibbons, M. C., & Castagna, M. (1984). Serotonin as an inducer of spawning in six bivalve species. Aquaculture, 40(2), 189-191.
[82] Van In, V., Ntalamagka, N., O’Connor, W., Wang, T., Powell, D., Cummins, S. F., & Elizur, A. (2016). Reproductive neuropeptides that stimulate spawning in the Sydney Rock Oyster (Saccostrea glomerata). Peptides, 82, 109-119.
[83] Butt, D., O’Connor, S. J., Kuchel, R., O’Connor, W. A., & Raftos, D. A. (2008). Effects of the muscle relaxant, magnesium chloride, on the Sydney rock oyster (Saccostrea glomerata). Aquaculture, 275(1-4), 342-346.
[84] Taylor, A., Mills, D., Wang, T., Ntalamagka, N., Cummins, S. F., & Elizur, A. (2018). A sperm spawn-inducing pheromone in the Silver lip pearl oyster (Pinctada maxima). Marine biotechnology, 20, 531-541.
[85] Jiang, K., Chen, C., Jiang, G., Chi, Y., Xu, C., Kong, L., ... & Li, Q. (2024). Genetic improvement of oysters: Current status, challenges, and prospects. Reviews in Aquaculture, 16(2), 796-817.
[86] Chi, Y., Jiang, G., Liang, Y., Xu, C., & Li, Q. (2022). Selective breeding for summer survival in Pacific oyster (Crassostrea gigas): Genetic parameters and response to selection. Aquaculture, 556, 738271.
[87] Mizuta, D. D., & Wikfors, G. H. (2019). Seeking the perfect oyster shell: a brief review of current knowledge. Reviews in Aquaculture, 11(3), 586-602.
[88] Hedgecock, D. Genetics and Breeding of Highly Fecund Marine Species. In US-Japan Aquaculture Panel Symposium (p. 37).
[89] Brianik, C., & Allam, B. (2023). The need for more information on the resistance to biological and environmental stressors in triploid oysters. Aquaculture, 739913.
[90] Mizuta, D. D., Wikfors, G. H., Meseck, S. L., Li, Y., Dixon, M. S., Lim, H. J., ... & Pitchford, S. (2021). Use of natural trophic resources by Eastern oysters and Pacific oysters of different ploidy. Aquaculture and Fisheries, 6(1), 75-83.
[91] Wadsworth, P., Wilson, A. E., & Walton, W. C. (2019). A meta-analysis of growth rate in diploid and triploid oysters. Aquaculture, 499, 9-16.
[92] Nell, J. A. (2002). Farming triploid oysters. Aquaculture, 210(1-4), 69-88.
[93] Qin, Y., Shi, G., Wan, W., Li, S., Li, Y., Li, J., ... & Yu, Z. (2023). Comparative analysis of growth, survival and sex proportion among tetraploid-based autotriploid (Crassostrea gigas and C. angulata) and their allotriploid oysters. Aquaculture, 563, 739026.
[94] Downing, S. L., & Allen Jr, S. K. (1987). Induced triploidy in the Pacific oyster, Crassostrea gigas: optimal treatments with cytochalasin B depend on temperature. Aquaculture, 61(1), 1-15.
[95] Wadsworth, P., Casas, S., La Peyre, J., & Walton, W. (2019). Elevated mortalities of triploid eastern oysters cultured off-bottom in northern Gulf of Mexico. Aquaculture, 505, 363-373.
[96] Day, A. J., Hawkins, A. J. S., & Visootiviseth, P. (2000). The use of allozymes and shell morphology to distinguish among sympatric species of the rock oyster Saccostrea in Thailand. Aquaculture, 187(1-2), 51-72.
[97] Nowland, S. J., Silva, C. N., Southgate, P. C., & Strugnell, J. M. (2019). Mitochondrial and nuclear genetic analyses of the tropical black-lip rock oyster (Saccostrea echinata) reveals population subdivision and informs sustainable aquaculture development. BMC genomics, 20, 1-14.
[98] Chen, Y., Xu, C., & Li, Q. (2022). Genetic diversity in a genetically improved line of the Pacific oyster Crassostrea gigas with orange shell based on microsatellites and mtDNA data. Aquaculture, 549, 737791.
[99] Jin, K., Zhang, B., Jin, Q., Cai, Z., Wei, L., Wang, X., ... & Wang, X. (2021). CRISPR/cas9 system-mediated gene editing in the Fujian Oysters (Crassostrea angulate) by electroporation. Frontiers in Marine Science, 8, 763470.
[100] Smith, P. T., & Reddy, N. (2012). Application of magnetic resonance imaging (MRI) to study the anatomy and reproductive condition of live Sydney rock oyster, Saccostrea glomerata (Gould). Aquaculture, 334, 191-198.
[101] Botta, R., Asche, F., Borsum, J. S., & Camp, E. V. (2020). A review of global oyster aquaculture production and consumption. Marine Policy, 117, 103952.
[102] Le Vay, L., Carvalho, G. R., Quinitio, E. T., Lebata, J. H., Ut, V. N., & Fushimi, H. (2007). Quality of hatchery-reared juveniles for marine fisheries stock enhancement. Aquaculture, 268(1-4), 169-180.
[103] Grant, W. S., Jasper, J., Bekkevold, D., & Adkison, M. (2017). Responsible genetic approach to stock restoration, sea ranching and stock enhancement of marine fishes and invertebrates. Reviews in Fish Biology and Fisheries, 27, 615-649.
[104] Carranza, A., & Zu Ermgassen, P. S. (2020). A global overview of restorative shellfish mariculture. Frontiers in Marine Science, 7, 722.
[105] Camp, E. V., Pine III, W. E., Havens, K., Kane, A. S., Walters, C. J., Irani, T., ... & Morris Jr, J. G. (2015). Collapse of a historic oyster fishery: diagnosing causes and identifying paths toward increased resilience. Ecology and Society, 20(3).
[106] Boyd, C. E., D’Abramo, L. R., Glencross, B. D., Huyben, D. C., Juarez, L. M., Lockwood, G. S., ... & Valenti, W. C. (2020). Achieving sustainable aquaculture: Historical and current perspectives and future needs and challenges. Journal of the World Aquaculture Society, 51(3), 578-633.
[107] Nowland, S. J., O’Connor, W. A., Osborne, M. W., & Southgate, P. C. (2020). Current status and potential of tropical rock oyster aquaculture. Reviews in Fisheries Science & Aquaculture, 28(1), 57-70.
[108] Reeves, S. E., Renzi, J. J., Fobert, E. K., Silliman, B. R., Hancock, B., & Gillies, C. L. (2020). Facilitating better outcomes: How positive species interactions can improve oyster reef restoration. Frontiers in Marine Science, 7, 656.
[109] Loaiza, I., Wong, C., & Thiyagarajan, V. (2023). Comparative analysis of nutritional quality of edible oysters cultivated in Hong Kong. Journal of Food Composition and Analysis, 118, 105159.
[110] Andrisoa, A., Masimana, M., Lartaud, F., & Stieglitz, T. C. (2024). Site selection for farming the oyster Saccostrea cucullata in a tropical coastal lagoon. Aquaculture Reports, 37, 102210.
[111] . Wright, A. C., Fan, Y., & Baker, G. L. (2018). Nutritional value and food safety of bivalve molluscan shellfish. Journal of Shellfish Research, 37(4), 695-708.
[112] Ulagesan, S., Krishnan, S., Nam, T. J., & Choi, Y. H. (2022). A review of bioactive compounds in oyster shell and tissues. Frontiers in Bioengineering and Biotechnology, 10, 913839.
[113] Mclean, C. H., & Bulling, K. R. (2005). Differences in lipid profile of New Zealand marine species over four seasons. Journal of Food Lipids, 12(4), 313-326.
[114] Siriwardhana, N., Kalupahana, N. S., & Moustaid-Moussa, N. (2012). Health benefits of n-3 polyunsaturated fatty acids: eicosapentaenoic acid and docosahexaenoic acid. Advances in food and nutrition research, 65, 211-222.
[115] Dighriri, I. M., Alsubaie, A. M., Hakami, F. M., Hamithi, D. M., Alshekh, M. M., Khobrani, F. A., ... & Tawhari, M. Q. (2022). Effects of omega-3 polyunsaturated fatty acids on brain functions: a systematic review. Cureus, 14(10), e30091.
[116] Moniruzzaman, M., Sku, S., Chowdhury, P., Tanu, M. B., Yeasmine, S., Hossen, M. N., ... & Mahmud, Y. (2021). Nutritional evaluation of some economically important marine and freshwater mollusc species of Bangladesh. Heliyon, 7(5), E07088.
[117] Lin, P. H., Sermersheim, M., Li, H., Lee, P. H., Steinberg, S. M., & Ma, J. (2017). Zinc in wound healing modulation. Nutrients, 10(1), 16.
[118] Gupta, C. P. (2014). Role of iron (Fe) in body. IOSR Journal of Applied Chemistry, 7(11), 38-46.
[119] Goulding, A., & Robinson, M. (2002). Major minerals: calcium and magnesium. Essentials of human nutrition, 128-144.
[120] Ruggeri, R. M., D’Ascola, A., Vicchio, T. M., Campo, S., Gianì, F., Giovinazzo, S., ... & Trimarchi, F. (2020). Selenium exerts protective effects against oxidative stress and cell damage in human thyrocytes and fibroblasts. Endocrine, 68, 151-162.
[121] Venugopal, V., & Gopakumar, K. (2017). Shellfish: nutritive value, health benefits, and consumer safety. Comprehensive Reviews in Food Science and Food Safety, 16(6), 1219-1242.
[122] Hall, C. A. (1990). Function of vitamin B12 in the central nervous system as revealed by congenital defects. American journal of hematology, 34(2), 121-127.
[123] Goltzman, D. (2018). Functions of vitamin D in bone. Histochemistry and cell biology, 149(4), 305-312.
[124] Huang, Z., Liu, Y., Qi, G., Brand, D., & Zheng, S. G. (2018). Role of vitamin A in the immune system. Journal of clinical medicine, 7(9), 258.
[125] Ashja Ardalan, A., Emadi, H., Behzadi, D., & Khoshkho, Z. (2004). Nutrient values of the Rock oyster Saccostrea cucullata in Oman Sea shore.
[126] Diab, A., Dastmalchi, L. N., Gulati, M., & Michos, E. D. (2023). A heart-healthy diet for cardiovascular disease prevention: where are we now?. Vascular health and risk management, 237-253.
[127] Xia, Z., Miao, J., Chen, B., Guo, J., Ou, Y., Liang, X., ... & Cao, Y. (2022). Purification, identification, and antioxidative mechanism of three novel selenium-enriched oyster antioxidant peptides. Food research international, 157, 111359.
[128] Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy reviews, 4(8), 118.
[129] Akdeniz, D. (2017). Oyster symbolism in the art of painting. International Journal of Social and Humanities Sciences Research (JSHSR), 4(10), 339-354.
[130] Fallah, A., Mohammad-Hasani, A., & Colagar, A. H. (2018). Zinc is an essential element for male fertility: a review of Zn roles in men’s health, germination, sperm quality, and fertilization. Journal of reproduction & infertility, 19(2), 69.
[131] Yuasa, M., Kawabeta, K., Eguchi, A., Abe, H., Yamashita, E., Koba, K., & Tominaga, M. (2018). Characterization of taste and micronutrient content of rock oysters (Crassostrea nippona) and Pacific oysters (Crassostrea gigas) in Japan. International Journal of Gastronomy and Food Science, 13, 52-57.