West Kazakhstan Medical Journal

ISSN: 2707-6180 (Print) 2707-6199 (Online)

Pioneering research advancing the frontiers of medical knowledge and healthcare practices.

Neurological Aspects of Sarcopenia: A Comprehensive Update on Pathophysiology, Diagnosis, and Therapeutic Advances

Published date: Sep 26 2024

Journal Title: West Kazakhstan Medical Journal

Issue title: West Kazakhstan Medical Journal: Volume 66 Issue 3

Pages: 185 - 200

DOI: 10.18502/wkmj.v66i3.16629

Authors:

Mohammad Reza Kalantarhormozim.kalantarhormozi@yahoo.comDepartment of Internal Medicine, School of Medicine, Bushehr University of Medical Sciences, Bushehr

Alireza Afsharalireza.af2017@gmail.comStudent Research Committee, Bushehr University of Medical Sciences, Bushehr

Faeze Hajeb Faezeh.hjb@gmail.comStudent Research Committee, Bushehr University of Medical Sciences, Bushehr

Robab Bahreinibahreini.robab99@gmail.comStudent Research Committee, Bushehr University of Medical Sciences, Bushehr

Neshat Afsharineshatafshari@gmail.comDepartment of Internal Medicine, School of Medicine, Bushehr University of Medical Sciences, Bushehr

Abstract:

Sarcopenia is an age-related disorder characterized by progressive and generalized loss of skeletal muscle tissue. This condition affects approximately 9.9-40.4% of older adults, 2-34% of outpatients, and about 56% of hospitalized patients. Sarcopenia is classified into primary and secondary types, with primary sarcopenia resulting from the natural aging process and secondary sarcopenia caused by various factors such as sedentary lifestyle, disease, and nutrition. The pathophysiology of sarcopenia involves cellular mechanisms, including genetic alterations, telomere erosion, and proteostasis disruption. Mitochondrial dysfunction, epigenetic modifications, and metabolic factors also contribute to the condition. Neurological aspects, such as motor neuron loss and sodium channel dysfunction, play a crucial role in the development of sarcopenia. Prevention and treatment strategies include exercise interventions, nutritional strategies, and pharmacological interventions. Vitamin D supplementation, testosterone replacement therapy, and selective androgen receptor modulators (SARMs) are among the treatments explored. However, these treatments come with potential

Keywords: sarcopenia, skeletal muscle, cachexia, frailty, neurodegeneration

References:

[1] Ali S, Garcia JM. Sarcopenia, cachexia and aging: Diagnosis, mechanisms and therapeutic options - a mini-review. Gerontology. 2014;60(4):294-305. doi: https://doi.org/10.1159/000356760.

[2] Franceschi C, Garagnani P, Morsiani C, Conte M, Santoro A, Grignolio A, et al. The continuum of aging and agerelated diseases: Common mechanisms but different rates. Front Med (Lausanne). 2018;5:61. Epub 20180312. doi: https://doi.org/10.3389/fmed.2018.00061.

[3] Sandri M. Autophagy in skeletal muscle. FEBS Lett. 2010;584(7):1411-6. doi: https://doi.org/10.1016/j.febslet.2010. 01.056.

[4] Curcio F, Ferro G, Basile C, Liguori I, Parrella P, Pirozzi F, et al. Biomarkers in sarcopenia: A multifactorial approach. Exp Gerontol. 2016;85:1-8. doi: https://doi.org/10.1016/j.exger.2016.09.007.

[5] Morley JE, Baumgartner RN, Roubenoff R, Mayer J, Nair KS. Sarcopenia. J Lab Clin Med. 2001;137(4):231-43. doi: https://doi.org/10.1067/mlc.2001.113504.

[6] Wiedmer P, Jung T, Castro JP, Pomatto LC, Sun PY, Davies KJ, et al. Sarcopenia–molecular mechanisms and open questions. Ageing Res. Rev. 2021;65:101200. doi: https://doi.org/10.1016/j.arr.2020.101200.

[7] Murton AJ. Muscle protein turnover in the elderly and its potential contribution to the development of sarcopenia. Proc. Nutr. Soc. 2015;74(4):387-96.

[8] Argiles JM, Busquets S, Stemmler B, Lopez-Soriano FJ. Cachexia and sarcopenia: Mechanisms and potential targets for intervention. Curr Opin Pharmacol. 2015;22:100-6. doi: https://doi.org/10.1016/j.coph.2015.04.003.

[9] Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosisreport of the European working group on sarcopenia in older people. Age Ageing. 2010;39(4):412-23. doi: https://doi.org/10.1093/ageing/afq034.

[10] Xu J, Wan CS, Ktoris K, Reijnierse EM, Maier AB. Sarcopenia is associated with mortality in adults: A systematic review and meta-analysis. Gerontology. 2022;68(4):361-76. doi: https://doi.org/10.1159/000517099.

[11] Makizako H, Nakai Y, Tomioka K, Taniguchi Y. Prevalence of sarcopenia defined using the Asia Working group for sarcopenia criteria in Japanese community-dwelling older adults: A systematic review and meta-analysis. Phys Ther Res. 2019;22(2):53-7. doi: https://doi.org/10.1298/ptr.R0005.

[12] Mayhew A, Amog K, Phillips S, Parise G, McNicholas P, De Souza R, et al. The prevalence of sarcopenia in community-dwelling older adults, an exploration of differences between studies and within definitions: A systematic review and meta-analyses. Age Ageing. 2019;48(1):48-56. doi: https://doi.org/10.1093/ageing/afy106.

[13] Reijnierse EM, Trappenburg MC, Leter MJ, Blauw GJ, Sipila S, Sillanpaa E, et al. The Impact of different diagnostic criteria on the prevalence of sarcopenia in healthy elderly participants and geriatric outpatients. Gerontology. 2015;61(6):491-6. doi: https://doi.org/10.1159/000377699.

[14] Churilov I, Churilov L, MacIsaac RJ, Ekinci EI. Systematic review and meta-analysis of prevalence of sarcopenia in post acute inpatient rehabilitation. Osteoporos Int. 2018;29(4):805-12. doi: https://doi.org/10.1007/s00198-018- 4381-4.

[15] Bauer J, Morley J, Schols A, Ferrucci L, Cruz-Jentoft A, Dent E, et al. Sarcopenia: A Time for Action An SCWD Position Paper. J Cachexia Sarcopenia Muscle. 2019;10:956-61. doi: https://doi.org/10.1002/jcsm.12483.

[16] Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Writing group for the European working group on sarcopenia in older people 2 (Ewgsop2), and the extended group for Ewgsop2. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16-31. doi: https://doi.org/10.1093/ageing/afy169.

[17] Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16-31. doi: https://doi.org/10.1093/ageing/afy169.

[18] Thomas DR. Loss of skeletal muscle mass in aging: Examining the relationship of starvation, sarcopenia and cachexia. Clin. Nutr. 2007;26(4):389-99. doi: https://doi.org/10.1016/j.clnu.2007.03.008.

[19] Jeejeebhoy KN. Malnutrition, fatigue, frailty, vulnerability, sarcopenia and cachexia: Overlap of clinical features. Curr Opin Clin Nutr Metab Care. 2012;15(3):213-9. doi: https://doi.org/10.1097/MCO.0b013e328352694f.

[20] Ter Beek L, Vanhauwaert E, Slinde F, Orrevall Y, Henriksen C, Johansson M, et al. Unsatisfactory knowledge and use of terminology regarding malnutrition, starvation, cachexia and sarcopenia among dietitians. Clin. Nutr. 2016;35(6):1450-6. doi: https://doi.org/10.1016/j.clnu.2016.03.023.

[21] Hofmeister F, Baber L, Ferrari U, Hintze S, Jarmusch S, Krause S, et al. Late-onset neuromuscular disorders in the differential diagnosis of sarcopenia. BMC Neurol. 2021;21(1):241. doi: https://doi.org/10.1186/s12883-021-02264-y.

[22] Dimachkie MM, Barohn RJ, editors. Inclusion body myositis. Semin. Neurol. 2012;32(3): 237-245.

[23] Santos MO, Gromicho M, Pinto S, de Carvalho M. Very late-onset amyotrophic lateral sclerosis in a Portuguese cohort. Amyotroph Lateral Scler Frontotemporal Degener. 2018;19(7-8):619-22. doi: https://doi.org/10.1080/21678421.2018.1510010.

[24] Udd B, Meola G, Krahe R, Thornton C, Ranum LP, Bassez G, et al. 140th Enmc International Workshop: myotonic dystrophy Dm2/Promm and other myotonic dystrophies with guidelines on management. Neuromuscul Disord. 2006;16(6):403-13. doi: https://doi.org/10.1016/j.nmd.2006.03.010.

[25] Cederholm T, Jensen G, Correia M, Gonzalez MC, Fukushima R, Higashiguchi T, et al. Glim criteria for the diagnosis of malnutrition–a consensus report from the global clinical nutrition community. J Cachexia Sarcopenia Muscle. 2019;10(1):207-17. doi: https://doi.org/10.1002/jcsm.12383.

[26] Cruz-Jentoft AJ, Sayer AA. Sarcopenia. Lancet. 2019;393(10191):2636-46. doi: https://doi.org/10.1016/S0140- 6736(19)31138-9.

[27] Muscaritoli M, Anker S, Argilés J, Aversa Z, Bauer J, Biolo G, et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: Joint document elaborated by special interest groups (Sig)“cachexiaanorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin. Nutr. 2010;29(2):154-9. doi: https://doi.org/10.1016/j.clnu.2009.12.004.

[28] Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, et al. Definition and classification of cancer cachexia: An International consensus. Lancet Oncol. 2011;12(5):489-95. doi: https://doi.org/10.1016/S1470- 2045(10)70218-7.

[29] Argiles JM, Busquets S, Stemmler B, Lopez-Soriano FJ. Cachexia and sarcopenia: Mechanisms and potential targets for intervention. Curr Opin Pharmacol. 2015;22:100-6.

[30] Morley JE, von Haehling S, Anker SD. Are we closer to having drugs to treat muscle wasting disease? J Cachexia Sarcopenia Muscle. 2014;5(2):83-7. doi: https://doi.org/10.1007/s13539-014-0149-7.

[31] Baracos VE, Martin L, Korc M, Guttridge DC, Fearon KCH. Cancer-associated cachexia. Nat Rev Dis Primers. 2018;4(1):17105. Epub 20180118. doi: https://doi.org/10.1038/nrdp.2017.105.

[32] Peterson SJ, Mozer M. Differentiating sarcopenia and cachexia among patients with cancer. Nutr Clin Pract. 2017;32(1):30-9. doi: https://doi.org/10.1177/0884533616680354.

[33] Visser M, Kritchevsky SB, Goodpaster BH, Newman AB, Nevitt M, Stamm E, et al. Leg muscle mass and composition in relation to lower extremity performance in men and women aged 70 to 79: The health, aging and body composition study. J Am Geriatr Soc. 2002;50(5):897-904. doi: https://doi.org/10.1046/j.1532- 5415.2002.50217.x.

[34] Drescher C, Konishi M, Ebner N, Springer J. Loss of muscle mass: Current developments in cachexia and sarcopenia focused on biomarkers and treatment. J Cachexia Sarcopenia Muscle. 2015;6(4):303-11. doi: https://doi.org/10.1002/jcsm.12082.

[35] Goljanek-Whysall K, Iwanejko LA, Vasilaki A, Pekovic-Vaughan V, McDonagh B. Ageing in relation to skeletal muscle dysfunction: Redox homoeostasis to regulation of gene expression. Mamm Genome. 2016;27(7-8):341-57. doi: https://doi.org/10.1007/s00335-016-9643-x.

[36] Tichy ED, Sidibe DK, Tierney MT, Stec MJ, Sharifi-Sanjani M, Hosalkar H, et al. Single stem cell imaging and analysis reveals telomere length differences in diseased human and mouse skeletal muscles. Stem Cell Rep. 2017;9(4):1328-41. doi: https://doi.org/10.1016/j.stemcr.2017.08.003.

[37] Stangl MK, Böcker W, Chubanov V, Ferrari U, Fischereder M, Gudermann T, et al. Sarcopenia–endocrinological and neurological aspects. Exp Clin Endocrinol Diabetes. 2019;6(01):8-22. doi: https://doi.org/10.1055/a-0672-1007.

[38] Kovacheva EL, Sinha Hikim AP, Shen R, Sinha I, Sinha-Hikim I. Testosterone supplementation reverses sarcopenia in aging through regulation of myostatin, C-Jun Nh2-terminal kinase, notch, and akt signaling pathways. Endocrinology. 2010;151(2):628-38. doi: https://doi.org/10.1210/en.2009-1177.

[39] Pacifici F, Della-Morte D, Piermarini F, Arriga R, Scioli MG, Capuani B, et al. Prdx6 plays a main role in the crosstalk between aging and metabolic sarcopenia. Antioxidants. 2020;9(4):329. doi: https://doi.org/10.3390/antiox9040329.

[40] Vitale JA, Bonato M, La Torre A, Banfi G. The role of the molecular clock in promoting skeletal muscle growth and protecting against sarcopenia. Int J Mol Sci. 2019;20(17):4318. doi: https://doi.org/10.3390/ijms20174318.

[41] Pacifici F, Arriga R, Sorice GP, Capuani B, Scioli MG, Pastore D, et al. Peroxiredoxin 6, a novel player in the pathogenesis of diabetes. Diabetes. 2014;63(10):3210-20. doi: https://doi.org/10.2337/db14-0144

[42] Fatma N, Singh P, Chhunchha B, Kubo E, Shinohara T, Bhargavan B, et al. Deficiency of Prdx6 in lens epithelial cells induces er stress response-mediated impaired homeostasis and apoptosis. Am J Physiol Cell Physiol. 2011;301(4):C954-67. doi: https://doi.org/10.1152/ajpcell.00061.2011.

[43] Morley JE. Diabetes and aging: Epidemiologic overview. Clin Geriatr Med. 2008;24(3):395-405, v. doi: https://doi.org/10.1016/j.cger.2008.03.005.

[44] Pickles S, Vigie P, Youle RJ. Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr Biol. 2018;28(4):R170-R85. doi: https://doi.org/10.1016/j.cub.2018.01.004.

[45] Romanello V, Sandri M. Mitochondrial quality control and muscle mass maintenance. Front Physiol. 2015;6:422. doi: https://doi.org/10.3389/fphys.2015.00422.

[46] Kondratov RV, Kondratova AA, Gorbacheva VY, Vykhovanets OV, Antoch MP. Early aging and age-related pathologies in mice deficient in Bmal1, the core componentof the circadian clock. Genes Dev. 2006;20(14):1868- 73. doi: https://doi.org/10.1101/gad.1432206.

[47] Riley LA, Esser KA. The role of the molecular clock in skeletal muscle and what it is teaching us about musclebone crosstalk. Curr. Osteoporos. Rep. 2017;15(3):222-30. doi: https://doi.org/10.1007/s11914-017-0363-2.

[48] Brown DM, Goljanek-Whysall K. Micrornas: Modulators of the underlying pathophysiology of sarcopenia? Ageing Res Rev. 2015;24(PtB):263-73. doi: https://doi.org/10.1016/j.arr.2015.08.007.

[49] Gensous N, Bacalini MG, Franceschi C, Meskers CGM, Maier AB, Garagnani P. Age-related DNA methylation changes: Potential impact on skeletal muscle aging in humans. Front Physiol. 2019;10:996. doi: https://doi.org/10.3389/fphys.2019.00996.

[50] Goljanek-Whysall K, Iwanejko LA, Vasilaki A, Pekovic-Vaughan V, McDonagh B. Ageing in relation to skeletal muscle dysfunction: Redox homoeostasis to regulation of gene expression. Mamm Genome. 2016;27(7):341-57. doi: https://doi.org/10.1007/s00335-016-9643-x.

[51] He L, Khanal P, Morse CI, Williams A, Thomis M. Differentially methylated gene patterns between age-matched sarcopenic and non-sarcopenic women. J Cachexia Sarcopenia Muscle. 2019;10(6):1295-306. doi: https://doi.org/10.1002/jcsm.12478.

[52] Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013; 153(6):1194-217. doi: https://doi.org/10.1016/j.cell.2013.05.039.

[53] Bian A, Ma Y, Zhou X, Guo Y, Wang W, Zhang Y, et al. Association between sarcopenia and levels of growth hormone and insulin-like growth factor-1 in the elderly. BMC Musculoskelet. Disord. 2020;21(1):1-9. doi: https://doi.org/10.1186/s12891-020-03236-y.

[54] Van Nieuwpoort I, Vlot M, Schaap L, Lips P, Drent M. The relationship between serum igf-1, handgrip strength, physical performance and falls in elderly men and women. Eur. J. Endocrinol. 2018;179(2):73-84. doi: https://doi.org/10.1530/EJE-18-0076.

[55] Domingues-Faria C, Vasson MP, Goncalves-Mendes N, Boirie Y, Walrand S. Skeletal muscle regeneration and impact of aging and nutrition. Ageing Res Rev. 2016;26:22-36. doi: https://doi.org/10.1016/j.arr.2015.12.004.

[56] Verdijk LB, Snijders T, Drost M, Delhaas T, Kadi F, van Loon LJ. Satellite cells in human skeletal muscle; from birth to old age. Age (Dordr). 2014;36(2):545-7. doi: https://doi.org/10.1007/s11357-013-9583-2.

[57] Goodpaster BH, Carlson CL, Visser M, Kelley DE, Scherzinger A, Harris TB, et al. Attenuation of Skeletal muscle and strength in the elderly: The health Abc study. J Appl Physiol (1985). 2001;90(6):2157-65. doi: https://doi.org/10.1152/jappl.2001.90.6.2157.

[58] Pascual-Fernandez J, Fernandez-Montero A, Cordova-Martinez A, Pastor D, Martinez-Rodriguez A, Roche E. Sarcopenia: Molecular pathways and potential targets for intervention. Int J Mol Sci. 2020;21(22):8844. doi: https://doi.org/10.3390/ijms21228844.

[59] Aagaard P, Suetta C, Caserotti P, Magnusson SP, Kjær M. Role of the nervous system in sarcopenia and muscle atrophy with aging: Strength training as a countermeasure. Scand J Med Sci Sports. 2010;20(1):49-64. doi: https://doi.org/10.1111/j.1600-0838.2009.01084.x.

[60] Dorfman LJ, Bosley TM. Age-related changes in peripheral and central nerve conduction in man. Neurology. 1979;29(1):38. doi: https://doi.org/10.1212/wnl.29.1.38.

[61] Tomlinson BE, Irving D. The numbers of limb motor neurons in the human lumbosacral cord throughout life. J Neurol Sci. 1977;34(2):213-9. doi: https://doi.org/10.1016/0022-510x(77)90069-7.

[62] Navarro A, Lopez-Cepero JM, Sanchez del Pino MJ. Skeletal muscle and aging. Front Biosci. 2001;6(3):D26-44. doi: https://doi.org/10.2741/navarro.

[63] Kwon YN, Yoon SS. Sarcopenia: neurological point of view. J Bone Metab. 2017;24(2):83-9. doi: https://doi.org/10.11005/jbm.2017.24.2.83.

[64] Malisoux L, Francaux M, Theisen D. What do single-fiber studies tell us about exercise training? Med Sci Sports Exerc. 2007;39(7):1051. doi: https://doi.org/10.1249/mss.0b13e318057aeb.

[65] Matthews VB, Åström M-B, Chan M, Bruce CR, Krabbe K, Prelovsek O, et al. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of amp-activated protein kinase. Diabetologia. 2009;52(7):1409-18. doi: https://doi.org/10.1007/s00125-009-1364-1.

[66] Mora F, Segovia G, del Arco A. Aging, plasticity and environmental enrichment: Structural changes and neurotransmitter dynamics in several areas of the brain. Brain Res. Rev. 2007;55(1):78-88. doi: https://doi.org/10.1016/j.brainresrev.2007.03.011.

[67] Clow C, Jasmin BJ. Brain-derived neurotrophic factor regulates satellite cell differentiation and skeltal muscle regeneration. Mol Biol Cell. 2010;21(13):2182-90. doi: https://doi.org/10.1091/mbc.e10-02-0154.

[68] Vilela TC, Muller AP, Damiani AP, Macan TP, da Silva S, Canteiro PB, et al. Strength and aerobic exercises improve spatial memory in aging rats through stimulating distinct neuroplasticity mechanisms. Mol. Neurobiol. 2017;54(10):7928-37. doi: https://doi.org/10.1007/s12035-016-0272-x.

[69] Kamei Y, Miura S, Suzuki M, Kai Y, Mizukami J, Taniguchi T, et al. Skeletal muscle Foxo1 (Fkhr) transgenic mice have less skeletal muscle mass, down-regulated type I (slow twitch/red muscle) fiber genes, and impaired glycemic control*[boxs]. J. Biol. Chem. 2004; 279(39):41114-23. doi: https://doi.org/10.1074/jbc.M400674200.

[70] Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, et al. Multiple Types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J . 2004;18(1):39-51. doi: https://doi.org/10.1096/fj.03-0610com.

[71] Reed SA, Sandesara PB, Senf SM, Judge AR. Inhibition of foxo transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. FASEB J. 2012;26(3):987-1000. doi: https://doi.org/10.1096/fj.11- 189977.

[72] Hirose Y, Onishi T, Miura S, Hatazawa Y, Kamei Y. Vitamin D attenuates foxo1-target atrophy gene expression in C2C12 muscle cells. J Nutr Sci Vitaminol (Tokyo). 2018;64(3):229-32. doi: https://doi.org/10.3177/jnsv.64.229.

[73] Yang A, Lv Q, Chen F, Wang Y, Liu Y, Shi W, et al. The effect of vitamin D on sarcopenia depends on the level of physical activity in older adults. J Cachexia Sarcopenia Muscle. 2020;11(3):678-89. doi: https://doi.org/10.1002/jcsm.12545.

[74] Bass JJ, Nakhuda A, Deane CS, Brook MS, Wilkinson DJ, Phillips BE, et al. Overexpression of the vitamin D receptor (vdr) Induces skeletal muscle hypertrophy. Mol Metab. 2020;42:101059. doi: https://doi.org/10.1016/j.molmet.2020.101059.

[75] Coen PM, Musci RV, Hinkley JM, Miller BF. Mitochondria as a target for mitigating sarcopenia. Front. physiol. 2019;9:1883. doi: https://doi.org/10.3389/fphys.2018.01883.

[76] Ryan ZC, Craig TA, Folmes CD, Wang X, Lanza IR, Schaible NS, et al. 1alpha,25-Dihydroxyvitamin D3 regulates mitochondrial oxygen consumption and dynamics in human skeletal muscle cells. J Biol Chem. 2016;291(3):1514- 28. doi: https://doi.org/10.1074/jbc.M115.684399.

[77] Sinha A, Hollingsworth KG, Ball S, Cheetham T. Improving the vitamin D status of vitamin D deficient adults is associated with improved mitochondrial oxidative function in skeletal muscle. J Clin Endocrinol Metab. 2013;98(3):E509-E13. doi: https://doi.org/10.1210/jc.2012-3592.

[78] Uchitomi R, Oyabu M, Kamei Y. Vitamin D and sarcopenia: potential of vitamin D Supplementation in sarcopenia prevention and treatment. Nutrients. 2020;12(10):3189. doi: https://doi.org/10.3390/nu12103189.

[79] Morley JE. Pharmacologic options for the treatment of sarcopenia. Calcif Tissue Int. 2016; 98(4):319-33. doi: https://doi.org/10.1007/s00223-015-0022-5.

[80] de Mello RGB, Dalla Corte RR, Gioscia J, Moriguchi EH. Effects of physical exercise programs on sarcopenia management, dynapenia, and physical performance in the elderly: A systematic review of randomized clinical trials. J Aging Res. 2019(1):1959486. doi: https://doi.org/10.1155/2019/1959486.

[81] Tsekoura M, Billis E, Tsepis E, Dimitriadis Z, Matzaroglou C, Tyllianakis M, et al. The effects of group and homebased exercise programs in elderly with sarcopenia: A randomized controlled trial. J. Clin. Med. [Internet]. 2018; 7(12). doi: https://doi.org/10.3390/jcm7120480.

[82] Vikberg S, Sorlen N, Branden L, Johansson J, Nordstrom A, Hult A, et al. Effects of resistance training on functional strength and muscle mass in 70-year-old individuals with pre-sarcopenia: A randomized controlled trial. J Am Med Dir Assoc. 2019;20(1):28-34. doi: https://doi.org/10.1016/j.jamda.2018.09.011.

[83] Yamada M, Kimura Y, Ishiyama D, Nishio N, Otobe Y, Tanaka T, et al. Synergistic effect of bodyweight resistance exercise and protein supplementation on skeletal muscle in sarcopenic or dynapenic older adults. Geriatr Gerontol Int. 2019;19(5):429-37. doi: https://doi.org/10.1111/ggi.13643.

[84] Talar K, Hernández-Belmonte A, Vetrovsky T, Steffl M, Kałamacka E, Courel-Ibáñez J. Benefits of resistance training in early and late stages of frailty and sarcopenia: A systematic review and meta-analysis of randomized controlled studies. J. Clin. Med. [Internet]. 2021;10(8). doi: https://doi.org/10.3390/jcm10081630.

[85] Siddique U, Rahman S, Frazer AK, Pearce AJ, Howatson G, Kidgell DJ. Determining the sites of neural adaptations to resistance training: A systematic review and meta-analysis. Sports Med. 2020; 50(6):1107-28. doi: https://doi.org/10.1007/s40279-020-01258-z.

[86] Borde R, Hortobagyi T, Granacher U. Dose-response relationships of resistance training in healthy old adults: A systematic review and meta-analysis. Sports Med. 2015;45(12):1693-720. doi: https://doi.org/10.1007/s40279-015- 0385-9.

[87] Xiao Y, Song D, Fu N, Zhang L, Zhang Y, Shen R, et al. Effects of resistance training on sarcopenia in patients with intestinal failure: A randomized controlled trial. Clin Nutr. 2023;42(10):1901-9. doi: https://doi.org/10.1016/j.clnu.2023.07.013.

[88] Chen N, He X, Feng Y, Ainsworth BE, Liu Y. Effects of resistance training in healthy older people with sarcopenia: A systematic review and meta-analysis of randomized controlled trials. Eur Rev Aging Phys Act. 2021;18(1):23. Epub 20211111. doi: https://doi.org/10.1186/s11556-021-00277-7.

[89] Sharma N, Chahal A, Balasubramanian K, Sanjeevi RR, Rai RH, Bansal N, et al. Effects of resistance training on muscular strength, endurance, body composition and functional performance among sarcopenic patients: A systematic review. J Diabetes Metab Disord. 2023;22(2):1053-71. doi: https://doi.org/10.1007/s40200-023-01283- 5.

Download
HTML
Cite
Share
statistics

1 Abstract Views

109 PDF Downloads