West Kazakhstan Medical Journal

ISSN: 2707-6180 (Print) 2707-6199 (Online)

Pioneering research advancing the frontiers of medical knowledge and healthcare practices.

Some Serologic Biomarkers of Multiple Sclerosis Activity: A Narrative Review

Published date: Jun 28 2024

Journal Title: West Kazakhstan Medical Journal

Issue title: West Kazakhstan Medical Journal: Volume 66 Issue 2

Pages: 146–154

DOI: 10.18502/wkmj.v66i2.16457

Authors:

Alima A. Khamidullaalimakhamidulla@mail.ruDepartment of Neurology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan

Zhanylsyn U. UrashevaDepartment of Neurology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan

Gulnar B. KabdrakhmanovaDepartment of Neurology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan

Aigul P. YermagambetovaDepartment of Neurology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan

Aigerim B. UtegenovaDepartment of Neurology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan

Abstract:

Interferon-beta (IFN-

Keywords: multiple sclerosis, serologic biomarkers, disease activity, neuroimmunology, autoimmunity

References:

[1] Yang J, Hamade M, Wu Q, Wang Q, Axtell R, Giri S, et al. Current and future biomarkers in multiple sclerosis. Int J Mol Sci. 2022 May;23(11):5877.

[2] Jewells VL, Latchaw RE. What can mimic multiple sclerosis? Semin Ultrasound CT MR. 2020 Jun;41(3):284–295.

[3] Das S, Ray BK, Pandit A, Kumar S, Dubey S. Multiple sclerosis and Moyamoya angiopathy: Mimic and misdiagnosis. Mult Scler Relat Disord. 2022 Oct;66:104036.

[4] Gul M, Jafari AA, Shah M, Mirmoeeni S, Haider SU, Moinuddin S, et al. Molecular biomarkers in multiple sclerosis and its related disorders: A critical review. Int J Mol Sci. 2020 Aug;21(17):6020.

[5] Mills EA, Mirza A, Mao-Draayer Y. Emerging approaches for validating and managing multiple sclerosis relapse. Front Neurol. 2017 Mar;8:116.

[6] Tur C, Moccia M, Barkhof F, Chataway J, Sastre- Garriga J, Thompson AJ, et al. Assessing treatment outcomes in multiple sclerosis trials and in the clinical setting. Nat Rev Neurol. 2018 Feb;14(2):75– 93.

[7] Goldschmidt CH, Hua LH. Re-evaluating the use of IFN-β and relapsing multiple sclerosis: Safety, efficacy and place in therapy. Degener Neurol Neuromuscul Dis. 2020 Jun;10:29–38.

[8] Farrell R. Neutralising antibodies to interferon beta in multiple sclerosis. 2010.

[9] Zare N, Zarkesh-Esfahani SH, Gharagozloo M, Shaygannejad V. Antibodies to interferon beta in patients with multiple sclerosis receiving CinnoVex, rebif, and betaferon. J Korean Med Sci. 2013 Dec;28(12):1801–6.

[10] Zettl UK, Rommer PS, Aktas O, Wagner T, Richter J, Oschmann P, et al. Interferon beta-1a sc at 25 years: A mainstay in the treatment of multiple sclerosis over the period of one generation. Expert Rev Clin Immunol. 2023;19(11):1343–1359.

[11] Prosperini L, Capobianco M, Giannì C. Identifying responders and nonresponders to interferon therapy in multiple sclerosis. Degener Neurol Neuromuscul Dis. 2014 Apr;4:75–85.

[12] Ziemssen T, Akgün K, Brück W. Molecular biomarkers in multiple sclerosis. J Neuroinflammation. 2019 Dec;16(1):272.

[13] van Munster CE, Uitdehaag BM. Outcome measures in clinical trials for multiple sclerosis. CNS Drugs. 2017 Mar;31(3):217–236.

[14] Dobson R, Rudick RA, Turner B, Schmierer K, Giovannoni G. Assessing treatment response to interferon-β: Is there a role for MRI? Neurology. 2014 Jan;82(3):248–54.

[15] Olesen MN, Soelberg K, Debrabant B, Nilsson AC, Lillevang ST, Grauslund J, et al. Cerebrospinal fluid biomarkers for predicting development of multiple sclerosis in acute optic neuritis: A population-based prospective cohort study. J Neuroinflammation. 2019 Mar;16(1):59.

[16] Jensen PE, Sellebjerg F, Søndergaard HB, Sørensen PS. Correlation between anti-interferon-β binding and neutralizing antibodies in interferon-β-treated multiple sclerosis patients. Eur J Neurol. 2012 Oct;19(10):1311–1317.

[17] Dunn N, Fogdell-Hahn A, Hillert J, Spelman T. Long-term consequences of high titer neutralizing antibodies to interferon-β in multiple sclerosis. Front Immunol. 2020 Oct;11:583560.

[18] Ferreira-Atuesta C, Reyes S, Giovanonni G, Gnanapavan S. The evolution of neurofilament light chain in multiple sclerosis. Front Neurosci. 2021 Apr;15:642384.

[19] Ning L, Wang B. Neurofilament light chain in blood as a diagnostic and predictive biomarker for multiple sclerosis: A systematic review and meta-analysis. PLoS One. 2022 Sep;17(9):e0274565.


[20] Jafarzadeh A, Ahangar-Parvin R, Nemat M, Taghipour Z, Shamsizadeh A, Ayoobi F, et al. Ginger extract modulates the expression of IL-12 and TGF-β in the central nervous system and serum of mice with experimental autoimmune encephalomyelitis. Avicenna J Phytomed. 2017;7(1):54–65.

[21] Berry SP, Dossou C, Kashif A, Sharifinejad N, Azizi G, Hamedifar H, et al. The role of IL-17 and anti-IL- 17 agents in the immunopathogenesis and management of autoimmune and inflammatory diseases. Int Immunopharmacol. 2022 Jan;102:108402.

[22] Moser T, Akgün K, Proschmann U, Sellner J, Ziemssen T. The role of TH17 cells in multiple sclerosis: Therapeutic implications. Autoimmun Rev. 2020 Oct;19(10):102647.

[23] Ruiz de Morales JM, Puig L, Daudén E, Cañete JD, Pablos JL, Martín AO, et al. Critical role of interleukin (IL)-17 in inflammatory and immune disorders: An updated review of the evidence focusing in controversies. Autoimmun Rev. 2020 Jan;19(1):102429.

[24] Haller O, Kochs G. Human MxA protein: An interferon-induced dynamin-like GTPase with broad antiviral activity. J Interferon Cytokine Res. 2011 Jan;31(1):79–87.

[25] Dick A, Graf L, Olal D, von der Malsburg A, Gao S, Kochs G, et al. Role of nucleotide binding and GTPase domain dimerization in dynaminlike myxovirus resistance protein A for GTPase activation and antiviral activity. J Biol Chem. 2015 May;290(20):12779–12792.

[26] Davis D, Yuan H, Liang FX, Yang YM, Westley J, Petzold C, et al. Human antiviral protein MxA forms novel metastable membraneless cytoplasmic condensates exhibiting rapid reversible tonicity-driven phase transitions. J Virol. 2019 Oct;93(22):e01014- e01019.

[27] Choi KM, Kim JJ, Yoo J, Kim KS, Gu Y, Eom J, et al. The interferon-inducible protein viperin controls cancer metabolic reprogramming to enhance cancer progression. J Clin Invest. 2022 Dec;132(24):e157302.

[28] Seo JY, Yaneva R, Cresswell P. Viperin: A multifunctional, interferon-inducible protein that regulates virus replication. Cell Host Microbe. 2011 Dec;10(6):534–539.

[29] Steinbusch MM, Caron MM, Surtel DA, van den Akker GG, van Dijk PJ, Friedrich F, et al. The antiviral protein viperin regulates chondrogenic differentiation via CXCL10 protein secretion. J Biol Chem. 2019 Mar;294(13):5121–5136.

[30] Weinstein AG, Godet I, Gilkes DM. The rise of viperin: The emerging role of viperin in cancer progression. J Clin Invest. 2022 Dec;132(24):e165907.

[31] Rangisetty PT, Kilaparthi A, Akula S, Bhardwaj M, Singh S. RSAD2: An exclusive target protein for Zika virus comparative modeling, characterization, energy minimization and stabilization. Int J Health Sci (Qassim). 2023;17(1):12–17.

[32] Pachner AR, Warth JD, Pace A, Goelz S; INSIGHT investigators. Effect of neutralizing antibodies on biomarker responses to interferon beta: The INSIGHT study. Neurology. 2009 Nov;73(18):1493– 1500.

[33] Andlauer TF, Link J, Martin D, Ryner M, Hermanrud C, Grummel V, et al. Treatment- and populationspecific genetic risk factors for anti-drug antibodies against interferon-beta: A GWAS. BMC Med. 2020 Nov;18(1):298.

[34] Farrell RA, Marta M, Gaeguta AJ, Souslova V, Giovannoni G, Creeke PI. Development of resistance to biologic therapies with reference to IFN- β. Rheumatology (Oxford). 2012 Apr;51(4):590–599.

[35] Sorensen PS. Antidrug antibodies against biological treatments for multiple sclerosis. CNS Drugs. 2022 Jun;36(6):569–589.

[36] Buck D, Cepok S, Hoffmann S, Grummel V, Jochim A, Berthele A, et al. Influence of the HLA-DRB1 genotype on antibody development to interferon beta in multiple sclerosis. Arch Neurol. 2011 Apr;68(4):480– 487.

[37] Adedokun OJ, Gunn GR 3rd, Leu JH, Gargano C, Xu Z, Sandborn WJ, et al. Immunogenicity of Golimumab and its clinical relevance in patients with ulcerative colitis. Inflamm Bowel Dis. 2019 Aug;25(9):1532–1540.

[38] Bots SJ, Parker CE, Brandse JF, Löwenberg M, Feagan BG, Sandborn WJ, et al. Anti-drug antibody formation against biologic agents in inflammatory bowel disease: A systematic review and metaanalysis. BioDrugs. 2021 Nov;35(6):715–733.

[39] Awwad S, Angkawinitwong U. Overview of antibody drug delivery. Pharmaceutics. 2018 Jul;10(3):83.

[40] Creeke PI, Farrell RA. Clinical testing for neutralizing antibodies to interferon-β in multiple sclerosis. Ther Adv Neurol Disord. 2013 Jan;6(1):3–17.

[41] Bever CT Jr, McFarlin DE, Levy HB. A comparison of interferon responses to poly ICLC in males and females. J Interferon Res. 1985;5(3):423–8.

[42] Magyari M, Koch-Henriksen N, Laursen B, Sørensen PS. Gender effects on treatment response to interferon-beta in multiple sclerosis. Acta Neurol Scand. 2014 Dec;130(6):374–379.

[43] Comabella M, Lünemann JD, Río J, Sánchez A, López C, Julià E, et al. A type I interferon signature in monocytes is associated with poor response to interferon-beta in multiple sclerosis. Brain. 2009 Dec;132(Pt 12):3353–3365.

[44] Bertolotto A, Granieri L, Marnetto F, Valentino P, Sala A, Capobianco M, et al. Biological monitoring of IFN-β therapy in multiple sclerosis. Cytokine Growth Factor Rev. 2015 Apr;26(2):241–248.

[45] Matas E, Bau L, Martínez-Iniesta M, Romero-Pinel L, Mañé MA, Cobo-Calvo Á, et al. Baseline MxA mRNA expression predicts interferon beta response in multiple sclerosis patients. PLoS One. 2014 Nov;9(11):e112758.

[46] Matas E, Bau L, Martínez-Iniesta M, Romero-Pinel L, Mañé-Martínez MA, Cobo-Calvo Á, et al. MxA mRNA expression as a biomarker of interferon beta response in multiple sclerosis patients. J Neuroimmunol. 2016 Feb;291:73–77.

[47] Libertinova J, Meluzinova E, Matoska V, Zajac M, Kovarova I, Havrdova E, et al. MxA mRNA decrease preceding NAb detection in IFNβ -treated MS patients. Brain Behav. 2017 Feb;7(3):e00644.

[48] Coerver EM, Strijbis EM, Petzold LF, Van Kempen ZL, Jasperse B, Barkhof F, et al. The association between blood MxA mRNA and long-term disease activity in early multiple sclerosis. Front Neurol. 2022 Aug;13:907245.

[49] Chemudupati M, Kenney AD, Bonifati S, Zani A, McMichael TM, Wu L, et al. From APOBEC to ZAP: Diverse mechanisms used by cellular restriction factors to inhibit virus infections. Biochim Biophys Acta Mol Cell Res. 2019 Mar;1866(3):382–394.

[50] Pietrzak A, Kalinowska-Łyszczarz A, Osztynowicz K, Khamidulla A, Kozubski W, Michalak S. A long-term follow-up study on biochemical and clinical biomarkers of response to interferon beta-1b treatment in relapsing-remitting multiple sclerosis. Adv Clin Exp Med. 2020 Jul;29(7):841–851.

[51] Domingues RB, Fernandes GB, Leite FB, Senne C. Neurofilament light chain in the assessment of patients with multiple sclerosis. Arq Neuropsiquiatr. 2019 Jul;77(6):436–441.

[52] Mariotto S, Farinazzo A, Monaco S, Gajofatto A, Zanusso G, Schanda KS, et al. Serum neurofilament light chain in NMOSD and RELATED DISorders: Comparison according to aquaporin- 4 and myelin oligodendrocyte glycoprotein antibodies status. Mult Scler J Exp Transl Clin. 2017;3(4):2055217317743098.

[53] Bose G, Healy BC, Saxena S, Saleh F, Paul A, Barro C, et al. Early neurofilament light and glial fibrillary acidic protein levels improve predictive models of multiple sclerosis outcomes. Mult Scler Relat Disord. 2023 Jun;74:104695.

[54] Bose G, Healy BC, Saxena S, Saleh F, Glanz BI, Bakshi R, et al. Increasing neurofilament and glial fibrillary acidic protein after treatment discontinuation predicts multiple sclerosis disease activity. Neurol Neuroimmunol Neuroinflamm. 2023 Oct;10(6):e200167.

[55] Novakova L, Axelsson M, Khademi M, Zetterberg H, Blennow K, Malmeström C, et al. Cerebrospinal fluid biomarkers as a measure of disease activity and treatment efficacy in relapsing-remitting multiple sclerosis. J Neurochem. 2017 Apr;141(2):296–304.

[56] Bhan A, Jacobsen C, Myhr KM, Dalen I, Lode K, Farbu E. Neurofilaments and 10-year follow-up in multiple sclerosis. Mult Scler. 2018 Sep;24(10):1301–1307.

[57] Williams T, Zetterberg H, Chataway J. Neurofilaments in progressive multiple sclerosis: A systematic review. J Neurol. 2021 Sep;268(9):3212–3222.

[58] Babaloo Z, Aliparasti MR, Babaiea F, Almasi S, Baradaran B, Farhoudi M. The role of Th17 cells in patients with relapsing-remitting multiple sclerosis: Interleukin-17A and interleukin-17F serum levels. Immunol Lett. 2015 Apr;164(2):76–80.

[59] Feng X, Bao R, Li L, Deisenhammer F, Arnason BG, Reder AT. Interferon-β corrects massive gene dysregulation in multiple sclerosis: Short-term and long-term effects on immune regulation and neuroprotection. EBioMedicine. 2019 Nov;49:269–283.

[60] Axtell RC, de Jong BA, Boniface K, van der Voort LF, Bhat R, De Sarno P, et al. T helper type 1 and 17 cells determine efficacy of interferon-beta in multiple sclerosis and experimental encephalomyelitis. Nat Med. 2010 Apr;16(4):406–412.

[61] Khan AW, Farooq M, Hwang MJ, Haseeb M, Choi S. Autoimmune neuroinflammatory diseases: Role of interleukins. Int J Mol Sci. 2023 Apr;24(9):7960.

[62] Ghaffari SA, Nemati M, Hajghani H, Ebrahimi H, Sheikhi A, Jafarzadeh A. Circulating concentrations of interleukin (IL)-17 in patients with multiple sclerosis: Evaluation of the effects of gender, treatment, disease patterns and IL-23 receptor gene polymorphisms. Iran J Neurol. 2017 Jan;16(1):15–25.

[63] Hartung HP, Steinman L, Goodin DS, Comi G, Cook S, Filippi M, et al. Interleukin 17F level and interferon β response in patients with multiple sclerosis. JAMA Neurol. 2013 Aug;70(8):1017–1021.

Download
HTML
Cite
Share
statistics

141 Abstract Views

112 PDF Downloads