Sudan Journal of Medical Sciences
ISSN: 1858-5051
High-impact research on the latest developments in medicine and healthcare across MENA and Africa
Phytochemical Analysis and Anti-obesity Effects of Kalanchoe pinnata Root-Stem Methanol Extract
Published date: Oct 16 2025
Journal Title: Sudan Journal of Medical Sciences
Issue title: Sudan JMS: Volume 20 (2025), Issue No. 3
Pages: 366 - 384
Authors:
Abstract:
Background: For a long time, Kalanchoe pinnata has been recognized for its therapeutic effects, primarily on metabolic diseases such as obesity. The current study aims to explore the weight reduction potential of the K. pinnata’s root-stem mixture and characterize its phytochemical profile.
Methods: The bioactive compounds of the root-stem powder were identified using qualitative and quantitative analyses. The Fourier transform infrared (FTIR) and ultraviolet/ visible (UV/Vis) spectroscopies were used to determine the functional groups. Volatile compounds were profiled using gas chromatography–mass spectrometry (GC– MS) analysis. In vitro, a pancreatic lipase inhibition assay was used to evaluate the anti-obesity potential of the methanol extract. An in vivo study was also conducted on high-fat diet-fed mice to investigate the lipid profiles and histopathological changes in the pancreas, liver, and kidney following treatment with the extract.
Results: Phytochemical screening revealed the presence of compounds such as flavonoids, polyphenols, saponins, and glycosaponins, known for improving metabolic disorders. The GC-MS showed the presence of volatile compounds. K. pinnata rootstem methanol extract exhibited significant inhibition of pancreatic lipase activity. The improved lipid profiles of the rats, weight reduction, and histopathological examinations revealed reduced inflammation and the restoration of normal pancreatic, liver, and kidney architecture, similar to the effects of Orlistat.
Conclusion: This study confirms K. pinnata’s anti-obesity effects. Thus, further clinical studies and investigation into the extract’s mechanism of action are needed to verify its safety and efficacy.
Keywords: Kalanchoe pinnata, obesity, Orlistat, medicinal plant, pancreatic lipase
References:
[1] Lingvay, I., Cohen, R. V., Roux, C. W. L., & Sumithran, P. (2024). Obesity in adults. Lancet, 404, 972–987. https://doi.org/10.1016/S0140-6736(24)01210-8
[2] Melson, E., Ashraf, U., Papamargaritis, D., & Davies, M. J. (2025). What is the pipeline for future medications for obesity? International Journal of Obesity, 49, 433–451. https://doi.org/10.1038/s41366- 024-01473-y
[3] Nutter, S., Eggerichs, L. A., Nagpal, T. S., Ramos Salas, X., Chin Chea, C., Saiful, S., Ralston, J., Barata- Cavalcanti, O., Batz, C., Baur, L. A., Birney, S., Bryant, S., Buse, K., Cardel, M. I., Chugh, A., Cuevas, A., Farmer, M., Ibrahim, A., Kataria, I.,... Yusop, S. (2024). Changing the global obesity narrative to recognize and reduce weight stigma: A position statement from the World Obesity Federation. Obesity Reviews, 25(1), e13642. https://doi.org/10.1111/obr.13642
[4] Marcelin, G., Gautier, E. L., & Clément, K. (2022). Adipose tissue fibrosis in obesity: Etiology and challenges. Annual Review of Physiology, 84(1), 135– 155. https://doi.org/10.1146/annurev-physiol-060721- 092930
[5] Mohajan, D., & Mohajan, H. K. (2023). Body mass index (BMI) is a popular anthropometric tool to measure obesity among adults. Journal of Innovations in Medical Research, 2(4), 25–33. https://doi.org/10.56397/JIMR/2023.04.06
[6] Jawad, M., Komal, M., Khan, F., Nadeem, R., & Ahmed, M. (2024). Comparison of dietary intake with usda my plate guidelines in in-patients setup at tertiary care hospital of Lahore. International Journal of Pharmacy and Integrated Health Sciences, 5(2), 136–148. https://doi.org/10.56536/ijpihs.v5i2.159
[7] Robinson, E. (2023). Obesity and the cost of living crisis. International Journal of Obesity,47(2), 93–94. https://doi.org/10.1038/s41366-022-01242-9
[8] Kloska, A., Węsierska, M., Malinowska, M., Gabig- Cimińska, M., & Jakóbkiewicz-Banecka, J. (2020). Lipophagy and lipolysis status in lipid storage and lipid metabolism diseases. International Journal of Molecular Sciences, 21(17), 6113–6144. https://doi.org/10.3390/ijms21176113
[9] Chakarov, S., Blériot, C., & Ginhoux, F. (2022). Role of adipose tissue macrophages in obesity-related disorders. The Journal of Experimental Medicine, 219(7), e20211948. https://doi.org/10.1084/jem.20211948
[10] Bessesen, D. H., & Van Gaal, L. F. (2018). Progress and challenges in anti-obesity pharmacotherapy. The Lancet. Diabetes & Endocrinology, 6(3), 237– 248. https://doi.org/10.1016/S2213-8587(17)30236-X
[11] Oshman, L., Othman, A., Furst, W., Heisler, M., Kraftson, A., Zouani, Y., Hershey, C., Cho, T. C., Guetterman, T., Piatt, G., & Griauzde, D. H. (2023). Primary care providers’ perceived barriers to obesity treatment and opportunities for improvement: A mixed methods study. PLoS One,18(4), e0284474. https://doi.org/10.1371/journal.pone.0284474
[12] Rao, P. P. (2025). Phytochemicals in obesity management: Mechanisms and clinical perspectives. Current Nutrition Reports, 14(1), 17. https://doi.org/10.1007/s13668-025-00611-w
[13] Hamid, M. W. A., & Haque, M. (2025). Micronutrients: Insulin resistance, Type 2 diabetes mellitus, metabolic syndrome. Bangladesh Journal of Medical Science, 24(1), 11–16. https://doi.org/10.3329/bjms.v24i1.78603
[14] Talib, A., Batool, A., Shah, S., & Shah, S. A. (2021). Evaluation of medicinal activity of Eclipta alba. International Journal of Pharmacy & Integrated Health Sciences, 1(1), 24–32. https://doi.org/10.56536/ijpihs.v1i1.6
[15] Latif, A., Ashiq, K., Qayyum, M., Ashiq, S., Ali, E., & Anwer, I. (2019). Phytochemical and pharmacological profile of the medicinal herb: Bryophyllum pinnatum. Journal of Animal and Plant Sciences, 29(6), 1528– 1534.
[16] Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265–275. https://doi.org/10.1016/S0021- 9258(19)52451-6
[17] Yemm, E. W., & Willis, A. J. (1954). The estimation of carbohydrates in plant extracts by anthrone. The Biochemical Journal, 57(3), 508–514. https://doi.org/10.1042/bj0570508
[18] Shahidi, F., & Wanasundara, P. K. J. P. D. (2002). Extraction and analysis of lipids. In Food lipids (pp. 152–187). CRC Press
[19] Singleton, V. L., & Rossi, J. A., Jr. (1965). Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents. American Journal of Enology and Viticulture,16(3), 144–158. https://doi.org/10.5344/ajev.1965.16.3.144
[20] Arvouet-Grand, A., Vennat, B., Pourrat, A., & Legret, P. (1994). Standardisation d’un extrait de propolis et identification des principaux constituants [Standardization of propolis extract and identification of principal constituents]. Journal de Pharmacie de Belgique, 49(6), 462–468.
[21] Siddiqui, M., Ismail, Z., Sahib, H., Helal, M., & Abdul, M. A. (2009). Analysis of total proteins, polysaccharides and glycosaponins contents of Orthosiphon stamineus Benth. In spray and freeze dried methanol: water(1:1) extract and its contribution to cytotoxic and antiangiogenic activities. Pharmacognosy Research, 1(5), 302–326.
[22] Bae, J. S., & Kim, T. H. (2011). Pancreatic lipase inhibitory and antioxidant activities of Zingiber officinale extracts. Han-Guk Sikpum Jeojang Yutong Hakoeji, 18(3), 390–396. https://doi.org/10.11002/kjfp.2011.18.3.390
[23] Stoytcheva, M., Montero, G., Zlatev, R., Leon, J., & Gochev, V. (2012). Analytical methods for lipases activity determination: A review. Current Analytical Chemistry, 8(3), 400–407. https://doi.org/10.2174/157341112801264879
[24] Lim, H. H., Lee, S. O., Kim, S. Y., Yang, S. J., & Lim, Y. (2013). Anti-inflammatory and antiobesity effects of mulberry leaf and fruit extract on high fat diet-induced obesity. Experimental Biology and Medicine (Maywood, N.J.), 238(10), 1160–1169. https://doi.org/10.1177/1535370213498982
[25] Lee, J. J., Kim, H. A., & Lee, J. (2018). The effects of Brassica juncea L. leaf extract on obesity and lipid profiles of rats fed a high-fat/high-cholesterol diet. Nutrition Research and Practice, 12(4), 298– 306. https://doi.org/10.4162/nrp.2018.12.4.298
[26] Finer, N. (2015). Medical consequences of obesity. Medicine (Abingdon), 43(2), 88–93. https://doi.org/10.1016/j.mpmed.2014.11.003
[27] Loos, R. J. F., & Yeo, G. S. H. (2022). The genetics of obesity: From discovery to biology. Nature Reviews. Genetics, 23(2), 120–133. https://doi.org/10.1038/s41576-021-00414-z
[28] Süntar, I. (2020). Importance of ethnopharmacological studies in drug discovery: Role of medicinal plants. Phytochemistry Reviews, 19(5), 1199–1209. https://doi.org/10.1007/s11101-019-09629-9
[29] Munir, M. U., Saeed, M. A., Masood, Z., Aslam, N., Farooq, U., & Farooq, M. (2022). Analgesic and anti-diabetic potential of Roystonea regia. International Journal of Pharmacy and Integrated Health Sciences, 3(2), 3–14. https://doi.org/10.56536/ijpihs.v3i2.47
[30] Abbas, F., Rashid, A., Raza, S. A., Haq, M. I. U., Haider, S., & Hamid, K. (2024). A comparative study of extraction optimization, antioxidant potential, and fatty acid composition of Cucumi sativus and Cucumis melo. International Journal of Pharmacy and Integrated Health Sciences, 5(2), 125–135. https://doi.org/10.56536/ijpihs.v5i2.169
[31] Saad, B., Zaid, H., Shanak, S. & Kadan, S. (2017). Anti-diabetes and anti-obesity medicinal plants and phytochemicals. Springer.
[32] Nabi, M., Latif, A., Ashiq, K., Parveen, R., Shah, S., Fiaz, A., & Ramzan, Z. (2023). Antioxidant and anti-inflammatory potential of Daucus carota L. seed extracts. The Journal of Animal and Plant Sciences, 33(1), 220–228. https://doi.org/10.36899/JAPS.2023.1.0612
[33] Latif, A., Ashiq, K., Ashiq, S., Ali, E., Anwer, I., & Qamar, S. (2020). Phytochemical analysis and in vitro investigation of anti-inflammatory and xanthine oxidase inhibition potential of root extracts of Bryophyllum pinnatum. The Journal of Animal and Plant Sciences, 30(1), 219–228. https://doi.org/10.36899/JAPS.2020.1.0025
[34] Pavani, A. N. T., Sheela, D., Ramesh, L., & Goli, S. (2022). In-vitro anti-lipase and antioxidant activities of Kalanchoe Pinnata leaves and Ficus racemosa fruit extracts. Journal of Pharmaceutical Negative Results, 13(10), 4005–4014.
[35] Mejía-Méndez, J. L., Bach, H., Lorenzo-Leal, A. C., Navarro-López, D. E., López-Mena, E. R., Hernández, L. R., & Sánchez-Arreola, E. (2023). Biological activities and chemical profiles of Kalanchoe fedtschenkoi extracts. Plants, 12(10), 1943–1958. https://doi.org/10.3390/plants12101943
[36] George, L. O., Radha, H. & Somasekariah, B. (2018). In vitro anti-diabetic activity and GC-MS analysis of bioactive compounds present in the methanol extract of Kalanchoe pinnata. Indian Journal of Chemistry, 57(B),1213–1221.
[37] Jaradat, N., Qadi, M., Ali, I., Hussein, F., Issa, L., Rashdan, D., Jamoos, M., Najem, R., Zarour, A., & Arar, M. (2021). Phytochemical screening, antiobesity, antidiabetic and antimicrobial assessments of Orobanche aegyptiaca from Palestine. BMC Complementary Medicine and Therapies, 21(1), 256. https://doi.org/10.1186/s12906-021-03431-x
[38] Menon, N., Sparks, J., & Omoruyi, F. (2015). Hypoglycemic and hypocholesterolemic activities of the aqueous preparation of Kalanchoe pinnata leaves in streptozotocin-induced diabetic rats. Asian Pacific Journal of Tropical Biomedicine, 5(1), 3–9. https://doi.org/10.1016/S2221-1691(15)30162-3
[39] Singh, R. P., & Pattnaik, A. K. (2024). Scientific insights into hyperlipidemia mitigation: A profound examination of isolated bioactive fractions of Kalanchoe pinnata (Lam.) leaves and their therapeutic implications using in vitro, in vivo, and in silico study from the characterized compounds using HPTLC MS/MSn analysis. Pharmacognosy Magazine, 20(3), 863–876. https://doi.org/10.1177/09731296241228925