KnE Life Sciences

ISSN: 2413-0877

The latest conference proceedings on life sciences, medicine and pharmacology.

Input-Output Analysis on Pia Saronde Production Process Scheduling with Invariant Max-Plus Linear System

Published date: Mar 27 2024

Journal Title: KnE Life Sciences

Issue title: International Conference On Mathematics And Science Education (ICMScE 2022): Life Sciences

Pages: 166–176

DOI: 10.18502/kls.v8i1.15545

Authors:

Nurwan .Department of Mathematics, Faculty of Mathematics and Natural Sciences, State University of Gorontalo, Indonesia

Sunarwin Ismailawinismail29@gmail.comDepartment of Mathematics, Faculty of Mathematics and Natural Sciences, State University of Gorontalo, Indonesia

Muhammad Rezky F. PayuDepartment of Mathematics, Faculty of Mathematics and Natural Sciences, State University of Gorontalo, Indonesia

Lailany YahyaDepartment of Mathematics, Faculty of Mathematics and Natural Sciences, State University of Gorontalo, Indonesia

Djihad WungguliDepartment of Mathematics, Faculty of Mathematics and Natural Sciences, State University of Gorontalo, Indonesia

Asriadi .Department of Mathematics, Faculty of Mathematics and Natural Sciences, State University of Gorontalo, Indonesia

Abstract:

Max-plus algebra is one of the analysis methods of discrete event systems which has many applications on systems theory and graph theory. Max-plus algebra is a set of real numbers R combined with ￿=-∞ equipped with operations max (⊕) and plus (⊗), can be denoted [(R]_ε,⊕,⊗) with [(R]_ε=R⋃{ε}) . The production process of pia saronde is one of the problems that can be analyzed using max-plus algebra. The production process of this product is sequentially carried out by making skin dough, filling, baking, cooling, and packaging the pia. The max-plus algebra theory was used in this research to determine the optimal time in the production scheduling of pia saronde. Meanwhile, the Invarian Max-plus Linear System (IMLS), max-plus algebraic theory, and the Discrete Event System (DES) were used to solve the production-related problems. IMLS analysis produces eigenvalues that represent the optimum production time. The results obtained the max-plus algebra model of x(k+1)=A-⊗x(k), where A-=A⊕B⊗C and y=K⊗x_0⊕H⊗u for input-output IMLS analysis. From the matrix A-, eigenvalue λ= 226 and eigenvector v=[278 278 278 279 299 302 324 356 488] were obtained. Furthermore, the value of λ describes the pia production schedule at a time span of 226 minutes.

Keywords: input-output analysis, pia saronde, scheduling, max-plus linear system

References:

[1] Nento AZ. “Pengaruh merek dan kemasan terhadap keputusan pembelian konsumen (studi kasus pada toko Pia Saronde).,” Skripsi. vol. 1, no. 931409065, p. 2013.

[2] Husain RK. “Meningkatkan pemahaman konsep pengukuran waktu melalui metode bermain peran pada kelas 1 SD Inpres Balayo kecamatan Patilanggio Kabupaten Pohuwato.,” Skripsi. vol. 1, no. 151411406, p. 2013.

[3] Afiati L. “Faktor faktor yang mempengaruhi perilaku konsumen dalam keputusan pembelian HP Oppo di meteor cell kecamatan Marisa kabupaten Pohuwato.,” AKMEN Jurnal Ilmiah. vol. 14, no. 2, p. 2017.

[4] W.F. Winarti, N. Kusumastuti, and E. Noviani, “Optimalisasi waktu produksi mie instan menggunakan analisis input-output sistem linear maks-plus waktu invarian.,” Bimaster: Buletin Ilmiah Matematika, Statistika dan Terapannya. vol. 4, no. 01, p.

[5] A. Gumelar, M. Kiftiah, and W.B. Partiwi, “Penerapan sistem linear aljabar max-plus interval waktu invariant pada sistem produksi (Studi Kasus: Produksi Minuman Khas Pontianak Lidah Buaya I Sun Vera).,” Bimaster: Buletin Ilmiah Matematika, Statistika dan Terapannya. vol. 7, no. 1, p.

[6] Prastiwi L, Listiana Y. “The aplication of max-plus algebra to determine the optimal time of ikat kupang woven production.,” (IJCSAM). International Journal of Computing Science and Applied Mathematics. 2017;3(2):77–80.

[7] Nurmalitasari D, Iswahyuni RE. “Desain petri net dan aplikasi aljabar max-plus pada produksi susu kedelai berkah.,” In: Prosiding Si Manis (Seminar Nasional Integrasi Matematika dan Nilai-Nilai Islami). pp. 268–276 (2020).

[8] Nurwan N, Payu MR. “Max-plus algebra model on inaportnet system ships service scheme.,” Barekeng: Jurnal Ilmu Matematika dan Terapan. vol. 16, no. 1, pp. 147–156, 2022. https://doi.org/10.30598/barekengvol16iss1pp147-156.

[9] Karo-Karo IR, Rohani R. “Manfaat media dalam pembelajaran.,” AXIOM: Jurnal Pendidikan dan Matematika. vol. 7, no. 1, p. 2018. https://doi.org/10.30821/axiom.v7i1.1778.

[10] Santoso KA, Suprajitno H. “On max-plus algebra and its application on image steganography.,” The Scientific World Journal. vol. 2018, p. 2018. https://doi.org/10.1155/2018/6718653.

[11] Martínez-Olvera C, Mora-Vargas J. A max-plus algebra approach to study time disturbance propagation within a robustness improvement context. Math Probl Eng. 2018;2018:1–18.

[12] Permana A, Siswanto S, Pangadi P. “Eigen problem over max-plus algebra on determination of the T3 brand shuttlecock production schedule.,” Numerical: Jurnal Matematika dan Pendidikan Matematika. pp. 23–30, 2020. https://doi.org/10.25217/numerical.v4i1.702.

[13] Liu Z, Qin ZY, Zhu L, Athavale SV, Sengupta A, Jia ZJ, et al. An enzymatic platform for primary amination of 1-aryl-2-alkyl alkynes. J Am Chem Soc. 2022 Jan;144(1):80–5.

[14] Subiono, Aljabar Maxplus dan Terapannya., 2013.

[15] Subiono S. “Using max-plus algebra in the flow shop scheduling.,” IPTEK The Journal for Technology and Science. vol. 20, no. 3, p. 2009. https://doi.org/10.12962/j20882033.v20i3.105.

[16] B. De Schutter, Max-algebraic system theory for discrete event systems., 1998.

[17] Rudhito MA. “Aljabar max-plus dan penerapannya.,” Universitas Sanata Dharma Yogyakarta. p. 2016.

Download
HTML
Cite
Share
statistics

171 Abstract Views

103 PDF Downloads