KnE Life Sciences
ISSN: 2413-0877
The latest conference proceedings on life sciences, medicine and pharmacology.
Evaluation of the Effect of PGPR Strains on Tomato Growth and Suppression of Ralstonia Wilt Disease
Published date: Jun 07 2022
Journal Title: KnE Life Sciences
Issue title: The First Asian PGPR Indonesian Chapter International e-Conference 2021
Pages: 664–671
Authors:
Abstract:
The tomato (Lycopersicum esculentum Mill.) has substantial scope for development due to its high economic value and large export potential. Ralstonia syzygii subsp. Indonesiensis (RSI) is the cause of bacterial wilt disease which attacks the vascular system in Solanaceae. It can cause large losses in yield and has caused global concern because of its widespread distribution and attack on many important crops. The aim of this research was to identifiy and characterize the ability of indigenous rhizobacterial isolates to control RSI and promote tomato growth. The PGPR traits studied were production of hydrogen cyanide, siderophores, biosurfactant, and ammonia, and protease activity. Bacterial identification was performed using 16S rRNA. Our findings revealed that the strains identified shared some similarities with Bacillus thuringiensis strain ATCC 10792 (IR.2.3.5), B. mycoides strain ATCC 6462 (IR.1.3.4), Bacillus thuringiensis strain IAM 12077 (IR.2.2. 1), Serratia ficaria strain DSM 4569 (IR.3.1.4), Enterobacter oryzendophyticus strain REICA_082 (IR.2.2.7), Cronobacter dublinensis subsp. lausannensis strain E515 (IR.2.2.5) and S. rubidaea strain DSM 4480 (IR.2.2.6). All of the isolates were tested for a variety of abilities related to growth promotion and biocontrol.
Keywords: Ralstonia wilt; 16S rRNA identification; PGPR traits
References:
[1] Susanna S, Chamzurni T, Pratama A. Dosis dan frekuensi kascing untuk pengendalian penyakit layu fusarium pada tanaman tomat. Jurnal Floratek. 2010;5:152 –163. [2] Siagian A. Lycopen senyawa fitokimia pada tomat dan semangka. Info Kesehatan Masyarakat. 2005;9(2):121–124.
[3] Basu A. Bio-efficacy of Pseudomonas fluorescens (7% WP and 5% SC formulations) against bacterial wilt disease of chili. Asia Pacific Journal of Sustainable Agriculture, Food and Energy. 2014;2(2):36-40.
[4] El-Argawy E, Adss IA. Quantitative gene expression of peroxidase, polyphenoloxidase and catalase as molecular markers for resistance against Ralstonia solanacearum. American Journal of Molecular Biology. 2016;6(2):88-100.
[5] Siri MI, Sanabria A, Pianzzola MJ. Genetic diversity and aggressiveness of Ralstonia solanacearum causing bacterial wilt of potato in Uruguay. Plant Disease. 2011;95(10):1292-1301.
[6] Álvarez B, López MM, Biosca EG. Influence of native microbiota on survival of Ralstonia solanacearum phylotype II in river water microcosms. Applied and Environmental Microbiology. 2007;73(22):7210-7217.
[7] Álvarez B, Biosca EG, López MM. On the life of Ralstonia solanacearum, a destructive bacterial plant pathogen. Current research, technology and education topics in applied microbiology and microbial biotechnology. 2010;1:267-279.
[8] Handini Z, Nawangsih AA. Keefektifan bakteri endofit dan bakteri perakaran pemacu pertumbuhan tanaman dalam menekan penyakit layu bakteri pada tomat. Jurnal Fitopatologi Indonesia. 2014;10(2):61-67.
[9] Khaeruni A, Gusnawati HS. Penggunaan Baccillus sp sebagai agens biokontrol untuk mengendalikan penyakit layu fusarium pada tanaman cabai. Jurnal Agroteknos. 2012;2(3):182-189.
[10] Joseph B, Ranjan PR, Lawrence R. Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicerarietinum L.). Journal of Plant roduction. 2007;1(2):141-151.
[11] Kumar A, Devi S, Pati S, Payal C, Negi S. Isolation, screening and characterization of bacteria from rhizosperic soils for different plant growth promoting (PGP) activities: An in vitro study. Recent Research in Science and Technology. 2012;4(1):1-5.
[12] Yanti Y, Astuti FF, Habazar T, Nasution CR. Screening of rhizobacteria from rhizosphere of healthy chili to control bacterial wilt disease and to promote growth and yield of chili. Biodiversitas Journal of Biological Diversity. 2017;18(1):1-9.
[13] Paulucci NS, Gallarato LA, Reguera YB et al. Arachis hypogaea PGPR isolated from Argentine soil modifies its lipids components in response to temperature and salinity. Microbiological Research. 2015;173:1-9.
[14] Khaeruni A, Sutariati GAK, Wahyuni S. Karakterisasi dan uji aktivitas bakteri rizosfer lahan ultisol sebagai pemacu pertumbuhan tanaman dan agensia hayati cendawan patogen tular tanah secara in vitro. Jurnal Hama dan Penyakit Tumbuhan Tropika. 2011;10(2):123-130.
[15] Lorck H. Production of hydrocyanic acid by bacteria. Physiology Plant. 1948;1:142-146.
[16] Alexander DB, Zuberer DA. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biology and Fertility of Soils. 1991;12(1):39-45.
[17] Monteiro L, Mariano LR, Souto-Maior AM. Antagonism of Bacillus spp. against Xanthomonas campestris pv. campestris. Brazilian Archives of Biology and Technology. 2005;48(1):23-29.
[18] Cappuccino JG, Sherman N. Microbiology, a laboratory manual. Massachusetts: Addison Wesley Reading; 1992.
[19] AW Bakker, Schippers B. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth stimulation. Soil Biology & Biochemistry. 1987;19:451-457.
[20] Bargabus RL, Zidack NK, Sherwood JE, Jacobsen BJ. Screening for the identification of potential biological control agents that induce systemic acquired resistance in sugar beet. Biological Control. 2004;30(2):342-350.
[21] Ji XL, Lu GB, Gai YP, Zheng CC, Mu ZM. Biological control against bacterial wilt and colonization of mulberry by an endophytic Bacillus subtilis strain. Federation of European Microbiological Societies (FEMS) Microbiology Ecology. 2008;65(3):565- 573.
[22] Roberts PD, Momol MT, Ritchie L, Olson SM, Jones JB, Balogh B. Evaluation of spray programs containing famoxadone plus cymoxanil, acibenzolar-S-methyl, and Bacillus subtilis compared to copper sprays for management of bacterial spot on tomato. Crop Protection. 2008;17(12):1519-1526.
[23] Hyakumachi M, Nishimura M, Arakawa T et al. Bacillus thuringiensis suppresses bacterial wilt disease caused by Ralstonia solanacearum with systemic induction of defense-related gene expression in tomato. Microbes and Environments. 2013;28(1):128-134.
[24] Niu DD, Liu HX, Jiang CH et al. The plant growth–promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate-and jasmonate/ethylene-dependent signaling pathways. Molecular Plant-Microbe Interactions. 2011;24(5):533-542.
[25] Xue QY, Chen Y, Li SM et al. Evaluation of the strains of Acinetobacter and Enterobacter as potential biocontrol agents against Ralstonia wilt of tomato. Biological Control. 2009;48(3):252-258.
[26] Prihatiningsih N, Djatmiko HA, Lestari P. Siderophore activity of Bacillus subtilis as plant growth promoters and biological control agent of eggplants pathogens. Jurnal Hama dan Penyakit Tumbuhan Tropika. 2017;17(2):170–178.
[27] Slepecky RA, Hemphill HE. The prokaryotes. Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E, editors. New York: Springer; 2006. https://doi.org/10.1007/0-387-30744-3_16.
[28] Rahayuniati RF, Mugiastuti E. Kefektifan Bacillus sp. dan Pseudomonas fluorescens mengendalikan Fusarium oxysporum f. sp. lycopersici dan Meloidogyne sp. penyebab penyakit layu pada tomat secara in vitro. Jurnal Pembangunan Pedesaan. 2012;12(1):65–70.
[29] Widodo MS, Sinaga I, Anas, Machmud M. Penggunaan Pseudomonas spp kelompok fluoresen untuk pengendalian penyakit pada akar gada (Plasmodiophora brassicae Wor.) Caisin (Brassica campestris L. Var. Chinensis (Rupr.) Olson). Bulletin Hama dan Penyakit Tumbuhan. 1993;62:94-105.
[30] Ward JP, King JR, Koerber AJ, Croft JM, Sockett RE, Williams P. Early development and quorum sensing in bacterial biofilms. Journal of Mathematical Biology. 2003;47(1):23-55.