KnE Energy

ISSN: 2413-5453

The latest conference proceedings on energy science, applications and resources

Bacterial Cellulose/Alginate Nanocomposite for Antimicrobial Wound Dressing

Published date: Apr 17 2018

Journal Title: KnE Energy

Issue title: The 2nd International Symposium "Physics, Engineering and Technologies for Biomedicine"

Pages: 202–211

DOI: 10.18502/ken.v3i2.1814

Authors:
Abstract:

Development of novel wound dressing has attracted more and more attentions in recent years. Bacterial cellulose is a biopolymer of great potentials, which features a distinctive three-dimensional structure consisting of an ultrafine network of cellulos nanofibers. In the present study, nanocomposite bacterial cellulose films modified in situ by the addition of alginate during the static cultivation of Gluconacetobacter sucrofermentans B-11267 were produced and then enriching the polymer with an antimicrobial agent tetracycline hydrochloride. The structure of bacterial cellulose and nanocomposite was analyzed by AFM and FTIR. The FTIR spectra displayed the specified interaction between the hydroxyl group of cellulose and the carboxyl group of alginate. The produced bacterial cellulose and nanocomposite were analyzed to determine tensile modulus. The antibacterial activity of nanocomposites were investigated by disk diffusion method. The resulting nanocomposite have high antibiotic activity against Staphylococcus aureus and can be used in medicine as a wound dressing.

Keywords: bacterial cellulose, Gluconacetobacter sucrofermentans, alginate, nanocomposite, antibacterial activity, wound dressing

References:

[1] M.L. Cacicedo, M.C. Castro, I. Servetas, Progress in bacterial cellulose matrices for biotechnological applications, Bioresour. Technol., vol. 213, pp. 172–180, 2016.


[2] B.V. Mohite and S.V. Patil, A novel biomaterial: bacterial cellulose and its new era applications, Biotechnol. Appl. Biochem. vol. 61, pp. 101–110, 2014.


[3] K.Y. Lee, G. Buldum, A. Mantalaris and A. Bismarck, More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites Macromol. Biosci., vol. 14, pp.10–32, 2014.


[4] Y. Dahman, Nanostructured biomaterials and biocomposites from bacterial cellulose nanofibers, J. Nanosci. Nanotechnol., vol. 9, pp. 5105–5122, 2009.


[5] Y. Numata, T. Sakata, H. Furukawa and K. Tajima, Bacterial cellulose gels with high mechanical strength, Mater. Sci. Eng. C Mater. Biol. Appl., vol. 147, pp. 57–62, 2015.


[6] Y. Pötzinger, D. Kralisch, D. Fischer. Bacterial nanocellulose: the future of controlled drug delivery? Ther. Deliv., vol. 8(9), pp. 753-761, 2017.


[7] I. Sulaeva, U. Henniges, T. Rosenau and A. Potthast, Bacterial cellulose as a material for wound treatment: Properties and modifications. A review, Biotechnol. Adv., vol. 33, pp. 1547–1571, 2015.


[8] M.H. Kwak, J.E. Kim, J. Go et al., Bacterial cellulose membrane produced by Acetobacter sp. A10 for burn wound dressing applications, Carbohydr. Polym., vol.122, pp. 387–398, 2015.


[9] F.K. Andrade, N. Alexandre, I. Amorim et al., Studies on the biocompatibility of bacterial cellulose, J. Bioact. Compat. Polym., vol. 28, pp. 97–112, 2013.


[10] M.H. Avila, S. Schwarz, E-M. Feldmann et al., Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration Appl. Microbiol. Biotechnol., vol. 98, pp. 7423–7435, 2014.


[11] S. Kirdponpattara, A. Khamkeaw, N. Sanchavanakit et al., Structural modification and characterization of bacterial cellulose-alginate composite scaffoldsfor tissue engineering, Carbohydr Polym., vol.132, pp. 146-55, 2015.


[12] L. M. Cacicedo, E. I. León, S. J. Gonzalez et al., Modified bacterial cellulose scaffolds for localized doxorubicin release in human colorectal HT-29 cells, Colloids Surf B Biointerfaces, vol. 140, pp. 421–429, 2016.


[13] W. Shao, H. Liua, X. Liub et al., Development of silver sulfadiazine loaded bacterial cellulose/sodium alginate composite films with enhanced antibacterial property, Carbohydr. Polym., vol.132, pp. 351–358, 2015.


[14] G. Yang, J. Xie, F. Hong et al., Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: Effect of fermentation carbon sources of bacterial cellulose Carbohydr. Polym., vol. 87(1), pp. 839–845, 2012.


[15] P. Zang, L. Chen, Q. Zhang and F.F. Hong, Using in sity dynamic cultures to rapidly biofabricate fabric-reinforsed composites of chitosan / bacterial nanocellulose for antibacterial wound dressings, Front Microbiol., vol. 7, pp. 260, 2016.


[16] W. Shao, H. Liu, S. Wang et al., Controlled release and antibacterial activity of tetracycline hydrochloride-loaded bacterial cellulose composite membranes, Carbohydr. Polym., vol. 145, pp. 114–120, 2016.


[17] E. Liyaskina, V. Revin, E. Paramonova et al., Nanomaterials from bacterial cellulose for antimicrobial wound dressing, J. Phys: Conf. Ser., vol. 784, p. 012034, 2017.


[18] V.V. Revin, E.V. Liyaskina, Strain Gluconacetobacter sucrofermentans – producer of bacterial cellulose, Patent RU 2523606, 2013.


[19] W. Czaja, D. Romanovicz and R.M. Brown, Structural investigations of microbial cellulose produced in stationary and agitated culture, Cellulose, vol. 11, pp. 403–411, 2004.


[20] Z. Yan, S. Chen, H. Wang et al., Biosynthesis of bacterial cellulose/multi-walled carbon nanotubes in agitated culture, Carbohydrate Polymers, vol. 74, pp. 659-665, 2008.


[21] C.F. Souza, N. Lucyszyn, M.A. Woehl et al., Property evaluations of dry-cast reconstituted bacterial cellulose/tamarind xyloglucan biocomposites. Carbohydr. Polym., vol. 93, pp. 144-153, 2013.


[22] W.C. Lin, C.C. Lien, H.J. Yeh et al., Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing application., Carbohydr. Polym., vol 94, pp. 603-611, 2013.

Download
HTML
Cite
Share
Crossref Cited-by logo

13

Ragaa A. Hamouda, Marwa Salah Abdel-Hamid (2022)

A Comparative Study of Cellulose Nanocomposite Derived from Algae and Bacteria and Its Applications,

First Page: 151

10.1007/978-3-030-94319-6_7

Cenk Denktaş, Derya Yilmaz Baysoy, Altan Bozdoğan, Hüseyin Sancar Bozkurt, Kutsal Bozkurt, Orhan Özdemir, Mehmet Yilmaz (2022)

Development and characterization of sodium alginate/bifidobacterium probiotic biohybrid material used in tissue engineering, Journal of Applied Polymer Science

Volume: 139, Issue: 18

10.1002/app.52086

Dian Andriani, Arina Yuthi Apriyana, Myrtha Karina (2020)

The optimization of bacterial cellulose production and its applications: a review, Cellulose

Volume: 27, Issue: 12, First Page: 6747

10.1007/s10570-020-03273-9

Natalia Revutskaya, Ekaterina Polishchuk, Ivan Kozyrev, Liliya Fedulova, Valentina Krylova, Viktoriya Pchelkina, Tatyana Gustova, Ekaterina Vasilevskaya, Sergey Karabanov, Anastasiya Kibitkina, Nadezhda Kupaeva, Elena Kotenkova (2024)

Application of Natural Functional Additives for Improving Bioactivity and Structure of Biopolymer-Based Films for Food Packaging: A Review, Polymers

Volume: 16, Issue: 14, First Page: 1976

10.3390/polym16141976

Akriti Tirkey, Priyanka Yadav, Laldinthari Suamte, Punuri Jayasekhar Babu (2023)

Alginate-based nanocomposite hydrogels for antimicrobial and antibiofilm applications,

First Page: 363

10.1016/B978-0-323-99638-9.00015-0

Chandini C. Mohan, Anjumol Joy, M. Megha, Ramya R. Prabhu, Arya B, Sarita G. Bhat (2024)

Nanocellulose-based Hydrogels: Synthesis, Characterisation, and Tissue Engineering Applications,

First Page: 78

10.1039/9781837673094-00078

Dieter Klemm, Katrin Petzold-Welcke, Friederike Kramer, Thomas Richter, Vanessa Raddatz, Wolfgang Fried, Sandor Nietzsche, Tom Bellmann, Dagmar Fischer (2021)

Biotech nanocellulose: A review on progress in product design and today’s state of technical and medical applications, Carbohydrate Polymers

Volume: 254, First Page: 117313

10.1016/j.carbpol.2020.117313

Mahyar Panahi‐Sarmad, Niloofar Alikarami, Tianyu Guo, Mehri Haji, Feng Jiang, Orlando J. Rojas (2024)

Aerogels based on Bacterial Nanocellulose and their Applications, Small

Volume: 20, Issue: 44

10.1002/smll.202403583

Kamil Piwowarek, Edyta Lipińska, Marek Kieliszek (2023)

Reprocessing of side-streams towards obtaining valuable bacterial metabolites, Applied Microbiology and Biotechnology

Volume: 107, Issue: 7-8, First Page: 2169

10.1007/s00253-023-12458-8

Tatyana I. Gromovykh, Irina A. Tarasova, Vadim V. Zefirov, Alexander A. Gulin, Ilya P. Ivanenko, Vyacheslav S. Molchanov, Elena P. Kharitonova, Olga I. Kiselyova (2025)

Composites of bacterial cellulose and alginate produced in situ: The impact of viscosity and temperature on the microscale morphology, Carbohydrate Polymers

Volume: 357, First Page: 123495

10.1016/j.carbpol.2025.123495

Mridula Sreedharan, Raji Vijayamma, Elena Liyaskina, Viktor V. Revin, Muhammad Wajid Ullah, Zhijun Shi, Guang Yang, Yves Grohens, Nandakumar Kalarikkal, Khalid Ali Khan, Sabu Thomas (2024)

Nanocellulose-Based Hybrid Scaffolds for Skin and Bone Tissue Engineering: A 10-Year Overview, Biomacromolecules

Volume: 25, Issue: 4, First Page: 2136

10.1021/acs.biomac.3c00975

Li Zha, Finn Lillelund Aachmann, Håvard Sletta, Øystein Arlov, Qi Zhou (2024)

Cellulose Nanofibrils/Alginates Double-Network Composites: Effects of Interfibrillar Interaction and G/M Ratio of Alginates on Mechanical Performance, Biomacromolecules

Volume: 25, Issue: 8, First Page: 4797

10.1021/acs.biomac.4c00093

Farah Fahma, Afrinal Firmanda, Jaydee Cabral, Daniel Pletzer, John Fisher, Bhushan Mahadik, I Wayan Arnata, Dewi Sartika, Anting Wulandari (2023)

Three-Dimensional Printed Cellulose for Wound Dressing Applications, 3D Printing and Additive Manufacturing

Volume: 10, Issue: 5, First Page: 1015

10.1089/3dp.2021.0327