Journal of Environmental Treatment Techniques

ISSN: 2309-1185

The latest advancements in environmental treatment technologies

Assessment of Air Pollutant Concentration Levels in High and Low Traffic Density Areas in Urban City: A Case of Port Harcourt, Nigeria

Published date: Mar 20 2025

Journal Title: Journal of Environmental Treatment Techniques

Issue title: Journal of Environmental Treatment Techniques: Volume 13, Issue 1

Pages: 1 - 27

DOI: 10.18502/jett.v13i1.18078

Authors:

Okoroafor Okechukwu Uchejeuchejeok21@gmail.comCentre for Environmental Management and Green Energy, University of Nigeria, Enugu Campus

Ifeanyi Emmanuel Ofoezieiofoezie@oauife.edu.ngInstitute of Ecology and Environmental Studies, Obafemi Awolowo University, Ile-Ife, Osun State

Abstract:

Vehicular emissions are a major source of air pollution, affecting air quality and human health. Port Harcourt faces increasing pollution due to high traffic, but the patterns and influencing factors are not well studied. This research examines air pollutant levels in high- and low-traffic areas, considering the effects of traffic and weather conditions. This was done to determine the pattern of air pollution concentrations in the city’s high and low traffic density zones. Five locations—Ozuoba, Umuechi, Rumuokoro, Rumuola, and Ada George—were chosen based on traffic density, and the concentrations of air pollutants and particle matter were tracked there. This is with the view to understand the extent traffic contributes to vehicular pollution and its consequences on human health. MX6 Ibrid Multigas Monitors (CO, VOC, SO2, NO2), MET ONE GT 321 for particle matter, Davis Vantage Vue and Weather Station for meteorological data, were used to monitor the quality of the air. The number of cars traveling through a site during three hours in the morning, afternoon, and nighttime was counted to create traffic records at the chosen places. Over two years (2018-2019), every parameter was observed in every site five days a week. PCA, t-test, One-way ANOVA, correlation, and regression were used to evaluate the data, were needed. The mean concentration of all pollutants was substantially (p < 0.001) greater in high-traffic density areas (HTDA) than in low-traffic density areas (LTDA), according to the results. CO (5.20±3.11-23.49±11.67 ppm), SO2 (0.03±0.02-0.28±0.25 ppm), NO2 (0.05±0.05-0.37±0.31 ppm), PM2.5 (67.18±37.33-189.63±77.10μg/m3), PM10 (65.90±45.04- 175.29±65.07 μg/m3), and VOC (0.06±0.07-0.37±0.36 ppm) were among the range of mean concentrations. Between 2018 and 2019, there was a substantial (p < 0.01) variation in the levels of CO and VOC, while other variables were similar. The concentrations of the other pollutants were similar (P>0.05), while the VOC concentrations differed significantly (p<0.05) between January and December. It was discovered that while weather variables including temperature, humidity, and wind speed had a major impact on the contaminants’ distribution, traffic volume greatly contributed to their concentration. Pollutants and meteorological elements are loaded into two components, according to principal component analysis. The major factor includes all of the pollutants and traffic volume, while the minor factor was the weather-related parameters. The study concluded that there was a distinctive pattern of air pollutant emissions in the studied area and that, although traffic levels greatly influence the pollutants’ concentration, meteorological factors also had an impact. Also, pollutants emitted from vehicles advanced over the years, thereby threatening human health. Among other things, it was suggested that air quality monitors be installed at various traffic crossings to track exhaust emissions levels for improved regulation and impact checks.

Keywords: air-pollutants, vehicles, emission, meteorological, traffic

References:

[1] World Health Organization. Air pollution [Internet]. Geneva: WHO; 2020 [cited 2020 Dec 23]. Available from: https://www.who.int/health-topics/airpollution#tab=tab_1

[2] Ucheje OO, Ogbuene EB, Ofoezie IE. Trend analysis of vehicular traffic contribution to air pollution in urban cities: a case study of Port Harcourt, Nigeria. Asian J Environ Ecol. 2021;17(1):45-62. Available from: http://dx.doi.org/10.9734/AJEE/2022/v17i130281

[3] World Health Organization. Global air quality guidelines: particulate matter, ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide [Internet]. Geneva: WHO; 2021 [cited 2021 Sep 23]. Available from: https://apps.who.int/iris/handle/10665/345329

[4] World Health Organization. Air pollution. In: Compendium of WHO and other UN guidance on health and environment. Geneva: WHO; 2022. (WHO/HEP/ECH/EHD/22.01).

[5] Banerjee T, Singh SB, Srivastava RK. Development and performance evaluation of statistical models correlating air pollutants and meteorological variables at Pantnagar, India. Atmos Res. 2011;99(3- 4):505-17. Available from: http://dx.doi.org/10.1016/j.atmosres.2010.12.003

[6] Ucheje OO, Ogbuene EB, Ofoezie IE. Modeling of CO and PM2.5 concentration levels in high traffic density areas using regression model. Int J Environ Pollut Res. 2021;9(3):33-50. Available from: https://doi.org/10.37745/ijepr.13

[7] Liu HY, Bartonova A, Schindler M, Sharma M, Behera SN, Katiyar K, et al. Respiratory disease in relation to outdoor air pollution in Kanpur, India. Arch Environ Occup Health. 2013;68(4):204-17. Available from: https://doi.org/10.1080/19338244.2012.701246

[8] Landrigan PJ, Fuller R, Acosta NJR, Adeyi O, Arnold R, Basu N, et al. The Lancet Commission on pollution and health. Lancet. 2018;391(10119):462–512. Available from: https://doi.org/10.1016/S0140- 6736(17)32345-0

[9] World Health Organization. Ambient air pollution: a global assessment of exposure and burden of disease report. Geneva: WHO; 2016.

[10] Fisher S, Bellinger DC, Cropper ML, Kumar P, Binagwaho A, Koudenoukpo JB, et al. Air pollution and development in Africa: impacts on health, the economy, and human capital. Lancet Planet Health. 2021;5(10):681–8. Available from: https://doi.org/10.1016/S2542-5196(21)00201-1

[11] World Health Organization. Air pollution [Internet]. Geneva: WHO; 2014 [cited 2024 Sep 24]. Available from: https://www.who.int/health-topics/air-pollution#tab=tab_1

[12] Lu J, Li B, Li H, Al-Barakani A. Expansion of city scale, traffic modes, traffic congestion, and air pollution. Cities. 2021;108:102974. Available from: https://doi.org/10.1016/j.cities.2020.102974

[13] Ayetor GK, Mbonigaba I, Ampofo J, Sunnu A. Investigating the state of road vehicle emissions in Africa: a case study of Ghana and Rwanda. Transp Res Interdiscip Perspect. 2021;11:100409. Available from: https://doi.org/10.1016/j.trip.2021.100409

[14] Ucheje O, Ikebude C. Comparative analysis of vehicular emissions in urban and rural milieus: a case study of Port Harcourt and Etche in Rivers State, Nigeria. Arch Appl Sci Res. 2015;7(5):39-44. Available from: http://scholarsresearchlibrary.com/archive.html

[15] Ipeaiyeda AR, Adegboyega DA. Assessment of air pollutant concentrations near major roads in residential, commercial, and industrial areas in Ibadan City, Nigeria. J Health Pollut. 2017;13:11-21. Available from: http://dx.doi.org/10.5696/2156-9614-7-13.11

[16] Ayodele RI, Dayo AA. Assessment of air pollutant concentrations near major roads in residential, commercial, and industrial areas in Ibadan City, Nigeria. J Health Pollut. 2017;13:11-21. Available from: http://dx.doi.org/10.5696/2156-9614-7-13.11

[17] Oyetunji OR, Kehinde TA, Taiwo OA, Temidayo LO, Inerie NE, Oladele JO. Environmental impact analysis of selected vehicle emissions in Nigeria. J Pollut. 2023;6(307):1-8. Available from: http://dx.doi.org/10.37421/2684-4958.2023.6.307

[18] Van Donkelaar A, Martin RV, Brauer M, Boys BL. Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate matter. Environ Health Perspect. 2015;123(2):135–43. Available from: https://doi.org/10.1289/ehp.1408646

[19] Adama O. Urban imaginaries: funding mega infrastructure projects in Lagos, Nigeria. Geojournal. 2018;83(2):257–74. Available from: https://doi.org/10.1007/s10708-016-9761-8

[20] Croitoru L, Chang JC, Akpokodje J. The health cost of ambient air pollution in Lagos. J Environ Protect. 2020;11(9):753. Available from: https://doi.org/10.4236/jep.2020.119046

[21] Ojolo SJ, Oke SA, Dinrifo RR, Eboda FY. A survey on the effects of vehicle emissions on human health in Nigeria. J Rural Trop Publ Health. 2007;6(16):16–23.

[22] Adeleke MA, Bamgbose JT, Oguntoke O, Itua EO, Bamgbose O. Assessment of health impacts of vehicular pollution on occupationally exposed people in Lagos metropolis, Nigeria. Trace Elem Electrolytes. 2011;28(2):126-133. doi:10.5414/TEP28128.

[23] Olajire AA, Azeez L, Oluyemi EA. Exposure to hazardous air pollutants along Oba Akran road, Lagos– Nigeria. Chemosphere. 2011;84(8):1044–1051. doi:10.1016/j.chemosphere.2011.04.074.

[24] Odekanle EL, Fakinle BS, Jimoda LA, Okedere OB, Akeredolu FA, Sonibare JA. In-vehicle and pedestrian exposure to carbon monoxide and volatile organic compounds in a mega city. Urban Clim. 2017;21:173–182. doi:10.1016/j.uclim.2017.06.004.

[25] Obanya HE, Amaeze NH, Togunde O, Otitoloju AA. Air pollution monitoring around residential and transportation sector locations in Lagos Mainland. J Health Pollut. 2018;8(19):1-10. doi:10.5696/2156- 9614-8.19.180903.

[26] Adepoju TT, Fakinle BS, Adesina OA, Okedere OB, Sonibare JA. Estimation of gaseous criteria air pollutants from road transport system in Lagos metropolis of Nigeria. Environ Qual Manag. 2018;27(4):155–162. doi:10.1002/tqem.21552.

[27] Utang PB, Peterside KS. Spatio-temporal variations in urban vehicular emissions in Port Harcourt city, Nigeria. Ethiop J Environ Stud Manag. 2011;4(2):10-15. doi:10.4314/ejesm.v4i2.5.

[28] Okelola OF, Appollonia O. Vehicular carbon emissions concentration level in Minna, Nigeria: The environmental cum climate implication. Afr Technol Policy Stud Network. 2013. Available from: Working Paper Series No. 71.

[29] Kumar P, Morawska L, Birmili W, Paasonen P, Hu M, Kulmala M, Harrison RM, Norford L, Britter R. Ultrafine particles in cities. Environ Int. 2014;66:1–10. doi:10.1016/j.envint.2014.01.013.

[30] Zak M, Melaniuk-Wolny E, Widziewicz K. The exposure of pedestrians, drivers and road transport passengers to nitrogen dioxide. Atmos Pollut Res. 2017;8:781–790. doi:10.1016/j.apr.2016.10.011.

[31] Ritchie H. Cars, planes, trains: where do CO2 emissions from transport come from? Available from: https://ourworldindata.org/co2-emissions-from-transport [Accessed 10 September 2024].

[32] Ritchie H. Sector by sector: where do global greenhouse gas emissions come from? Available from: https://ourworldindata.org/ghg-emissions-by-sector [Accessed 10 September 2024].

[33] Commission of the European Community (CEC). Green Paper on the Urban Environment. Brussels; 2000.

[34] Goyal S. Understanding urban vehicular pollution problem vis-à-vis ambient air quality, case study of megacity (Delhi, India). Environ Monit Assess. 2006;119(5):201-211. doi:10.1007/s10661-005-9043-2.

[35] Ojo OOS, Awokola OS. Investigation of air pollution from automobiles at intersections on some selected major roads in Ogbomoso, South Western, Nigeria. J Mech Civil Eng. 2012;1(4):31-35. doi:10.9790/1684- 0143135.

[36] Ndoke P, Uduak GA. Contributions of vehicular traffic to carbon dioxide emissions in Kaduna and Abuja, Northern Nigeria. Leonardo Electron J Pract Technol. 2006;6(5):81-90.

[37] Prince CM, Essiet U. Spatio-temporal variations in urban vehicular emissions in Uyo City, Akwa Ibom State, Nigeria. J Sustain Dev. 2014;7(4):272-281. doi:10.5539/jsd.v7n4p272.

[38] Ucheje OO, Okolo OJ. Contribution of vehicular emissions to climate change in Nigeria: A closer look. Int J Environ Pollut Res. 2023;11(1):43-62. doi:10.37745/ijepr.13/vol11n14362.

[39] Global Burden of Disease. Air pollution – Level 2 risk. Lancet. 2020;396(10258):224–225. doi:10.1016/s0140-6736(20)30752-2.

[40] Saville SB. Automotive options and quality management in developing countries. Ind Environ J Air Qual. 1993;16(2):20-32.

[41] Ucheje O, Agbazue VE. Health implication of vehicular emissions to traffic wardens and roadside business operators in Port Harcourt City. Arch Appl Sci Res. 2014;6(4):68-73.

[42] Asika N. Research methodology in behavioral sciences. Lagos: Longman Nigeria Plc; 2000.

[43] Hair JF, Bush RP, Ortinau DJ. Marketing research. New York: McGraw-Hill Publishing; 2000.

[44] Ishaya S, Chinenyenwa UE, Tochukwu I. Diurnal assessment of air quality at Zuba Motor Park, Abuja, Nigeria. Ann Ecol Environ Sci. 2023;5(1):54-63. doi:10.22259/2637-5338.0501005.

[45] Natali M, Zanella A, Rankovic A, Banas D, Cantaluppi C, Abbadie L, Lata JC. Assessment of trace metal air pollution in Paris using slurry-TXRF analysis on cemetery mosses. Environ Sci Pollut Res. 2016;23(23):23496–23510. doi:10.1007/s11356-016-7445-z.

[46] Hu X, Xu D, Wan Q. Short-term trend forecast of different traffic pollutants in Minnesota based on spot velocity conversion. Int J Environ Res Public Health. 2018;15(9):1925. doi:10.3390/ijerph15091925.

[47] Wei G, Zhang Z, Ouyang X, Shen Y, Jiang S, Liu B, et al. Delineating the spatial-temporal variation of air pollution with urbanization in the Belt and Road Initiative area. Environ Impact Assess Rev. 2021;91:106646. doi:10.1016/j.eiar.2021.106646.

[48] Zhang X, Xu H, Liang D. Spatiotemporal variations and connections of single and multiple meteorological factors on PM2.5 concentrations in Xi’an, China. Atmos Environ. 2022;275:119015. doi:10.1016/j.atmosenv.2022.119015.

[49] Baldwin N, Gilani O, Raja S, Batterman S, Ganguly R, Hopke P, Berrocal V, Robins T, Hoogterp S. Factors affecting pollutant concentrations in the near-road environment. Atmos Environ. 2015;115:223- 235. doi:10.1016/j.atmosenv.2015.05.024.

[50] Salma I, Borsós T, Németh Z, Weidinger T, Aalto T, Kulmala M. Comparative study of ultrafine atmospheric aerosol within a city. Atmos Environ. 2014;92:154–161. doi:10.1016/j.atmosenv.2014.04.020.

[51] Salma I, Varga V, Németh Z. Quantification of an atmospheric nucleation and growth process as a single source of aerosol particles in a city. Atmos Chem Phys. 2017;17:15007–15017. doi:10.5194/acp- 17-15007-2017.

[52] Hussein T, Puustinen A, Aalto PP, Mäkelä JM, Hämeri K, Kulmala M. Urban aerosol number size distributions. Atmos Chem Phys. 2004;4:391–411. doi:10.5194/acp-4-391-2004.

[53] Aalto P, Hämeri K, Paatero P, Kulmala M, Bellander T, Berglind N, Bouso L, Castaño-Vinyals G, Sunyer J, Cattani Marconi G, Cyrys A, von Klot J, Peters S, Zetzsche A, Lanki K, Pekkanen T, Nyberg J, Sjövall FB, Forastiere F. Aerosol particle number concentration measurements in five European cities using TSI-3022 condensation particle counter over a three-year period during health effects of air pollution on susceptible subpopulations. J Air Waste Manage Assoc. 2005;55:1064–76.

[54] Moore KF, Ning Z, Ntziachristos L, Schauer JJ, Sioutas C. Daily variation in the properties of urban ultrafine aerosol – Part I: Physical characterization and volatility. Atmos Environ. 2007;41:8633–46. doi:10.1016/j.atmosenv.2007.07.030.

[55] Avino P, Casciardi S, Fanizza C, Manigrasso M. Deep investigation of ultrafine particles in urban air. Aerosol Air Qual Res. 2011;11:654–63. doi:10.4209/aaqr.2010.10.0086.

[56] Dall’Osto M, Querol X, Alastuey A, O’Dowd C, Harrison RM, Wenger J, Gómez-Moreno FJ. On the spatial distribution and evolution of ultrafine particles in Barcelona. Atmos Chem Phys. 2013;13:741– 59. doi:10.5194/acp-13-741-2013.

[57] Mikkonen S, Németh Z, Varga V, Weidinger T, Leinonen V, Yli-Juuti T, Salma I. Decennial time trends and diurnal patterns of particle number concentrations in a central European city between 2008 and 2018. Atmos Chem Phys. 2020;20:12247–63. doi:10.5194/acp-20-12247-2020.

[58] Wang K, Dickinson RE, Liang S. Clear sky visibility has decreased over land globally from 1973 to 2007. Science. 2009;323:1468–70. doi:10.1126/science.1167549.

[59] Wan JM, Lin M, Chan CY, Zhang ZS, Engling G, Wang XM, et al. Change of air quality and its impact on atmospheric visibility in central-western Pearl River Delta. Environ Monit Assess. 2011;172:339–51. doi:10.1007/s10661-010-1338-2.

[60] Du K, Mu C, Deng J, Yuan F. Study on atmospheric visibility variations and the impacts of meteorological parameters using high temporal resolution data: An application of environmental internet of things in China. Int J Sustain Dev World Ecol. 2013;20:238–47. doi:10.1080/13504509.2013.783886.

[61] Chai F, Gao J, Chen Z, Wang S, Zhang Y, Zhang J, et al. Spatial and temporal variation of particulate matter and gaseous pollutants in 26 cities in China. J Environ Sci. 2014;26:75–82. doi:10.4209/aaqr.2018.10.0360.

[62] Liu B, Yang J, Yuan J, Wang J, Dai Q, Li T, et al. Source apportionment of atmospheric pollutants based on the online data by using PMF and ME2 models at a megacity, China. Atmos Res. 2017;185:22–31. doi:10.1016/j.atmosres.2016.10.023.

[63] Gaudel A, Cooper O, Ancellet G, Barret B, Boynard A, Burrows J, et al. Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. Elem Sci Anth. 2018;6:1–58. doi:10.1525/elementa.291.

[64] Lin J, Lin Y, Lin S, Dong J. The characteristic of atmospheric particulate matter and the influence factors in Xiamen for air quality management. Front Environ Sci. 2023;11:1220720. doi:10.3389/fenvs.2023.1220720.

[65] Qu F. Deposition in bronchial epithelium on fine particulate matter induced extracellular matrix obstructive pulmonary disease and IL37 effect and mechanism effects of air pollutants on hospitalization of chronic. PhD Thesis. Hebei: Hebei Medical University; 2020.

[66] Okimiji OP, Techato K, Simon JN, Tope-Ajayi OO, Okafor AT, Aborisade MA, Phoungthong K. Spatial Pattern of Air Pollutant Concentrations and their Relationship with Meteorological Parameters in Coastal Slum Settlements of Lagos, Southwestern Nigeria. Atmosphere. 2021;12(1426):1–27. doi:10.3390/atmos12111426.

[67] Wang J, Lu X, Yan Y, Zhou L, Ma W. Spatiotemporal characteristics of PM2.5 concentration in the Yangtze River Delta urban agglomeration, China on the application of big data and wavelet analysis. Sci Total Environ. 2020;724:138134. doi:10.1016/j.scitotenv.2020.138134.

[68] Zhang J, Zhu M, Yu M, Wang K, Zhang R. Evaluation of multiple air pollutant emission reductions in northern China district via resource sharing. J Clean Prod. 2022;379:134743. doi:10.1016/j.jclepro.2022.134743.

[69] Zhua Y, Huanga L, Li J, Ying Q, Zhang H, Liu X, Liao H, Li N, Liu Z, Mao Y, Fang H, Hu J. Sources of particulate matter in China: Insights from source apportionment studies published in 1987–2017. Environ Int. 2018;115:343–57. doi:10.1016/j.envint.2018.03.037.

[70] Zhang Y, Jiang W. Pollution characteristics and influencing factors of atmospheric particulate matter (PM2.5) in Chang-Zhu-Tan area. IOP Conf Ser Earth Environ Sci. 2018;108:1–7. doi:10.1088/1755- 1315/108/4/042047.