ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M.

ISSN: 2789-5009

Leading Ecuadorian research in science, technology, engineering, arts, and mathematics.

Correlation of Environment, Nutrition, Genetics, Epigenetics, Microbiota with Neonatal Fetus Development

Published date: Sep 09 2021

Journal Title: ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M.

Issue title: Volume 1, Issue 6

Pages: 1607–1618

DOI: 10.18502/espoch.v1i6.9652

Authors:

Iván Enrique Naranjo Logroñonaranjometropolitana@hotmail.comCarrera de Medicina, Facultad de Salud Pública, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador

Anthony Alfonso Naranjo CoronelCOLPOMED Centro Hospital del día, Riobamba, Ecuador

Angie Daniela Beltrán VeraCarrera de Medicina, Facultad de Salud Pública, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador

Ashley Carolina Cuzco MacíasCarrera de Medicina, Facultad de Salud Pública, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador

Abstract:

Introduction: From the moment of conception the human being is predisposed to undergo changes in fetal and neonatal development due to various external factors that occur throughout life and can in the long term influence the phenotypic expression of the new being. Objective: The objective of this work is to determine the relationship between the environment, nutrition, genetics, epigenetics and microbiota with neonatal fetus development and how they influence the phenotypic expression of the new being. Methods: A non-systematic search was performed in electronic databases such as COCHRANE, PUBMED, MEDLINE, etc. The bibliographic research was carried out in the period between October 2019 and January 2020. The studies carried out from 2007 to 2019, in the languages of Spanish and English, were included. Results: We found 51 bibliographic sources related to the subject, of which by means of a last simplification, 30 scientific articles were used that provided important information on the subject, and 21 articles were excluded. Conclusion: Research on methods to detect these interactions and to understand the mechanisms of these interactions is just beginning. However, there is evidence that they play an important role in human development.

Keywords: neonatal development, epigenetics, microbiota, fetal development, nutrition.

RESUMEN

Introducción: Desde el momento de la concepción el ser humano está predispuesto a sufrir cambios en el desarrollo fetal y neonatal debido a diversos factores externos que se presentan a lo largo de la vida y pueden a largo plazo influir en la expresión fenotípica del nuevo ser. Objetivo: El objetivo del presente trabajo es determinar la relación que existe entre el medio ambiente, nutrición, genética, epigenética y microbiota con el desarrollo feto neonatal y como los mismos influyen en la expresión fenotípica del nuevo ser. Métodos: Se realizó una búsqueda no sistemática en bases de datos electrónicas como COCHRANE, PUBMED, MEDLINE, etc. La investigación bibliográfica se realizó en el periodo comprendido entre octubre 2019 y enero 2020. Se incluyeron estudios realizados desde el año 2007 hasta el año 2019, en los idiomas de español e inglés. Resultados: Se encontraron 51 fuentes bibliográficas referentes al tema, de los cuales mediante una última simplificación se utilizaron 30 artículos científicos que aportaron información importante del tema y se excluyeron 21 artículos. Conclusiones: La investigación sobre métodos para detectar estas interacciones y para comprender los mecanismos de estas interacciones apenas está comenzando. Sin embargo, hay evidencia de que estas juegan un papel importante en el desarrollo humano.

Palabras clave: desarrollo neonatal, epigenética, microbiota, desarrollo fetal, nutrición.

References:

[1]Indrio F, Martini S, Francavilla R, et al. Epigenetic matters: The link between early nutrition, microbiome, and long‐term health development. Frontiers in Pediatrics. 2017;5.

[2]Tiffon C. The impact of nutrition and environmental epigenetics on human health and disease. Int J Mol Sci.
2018;19(11).

[3]Feinberg AP. The key role of epigenetics in human disease prevention and mitigation. New England Journal of Medicine. Massachussetts Medical Society. 2018; 378:1323–34.

[4]Kundakovic M, Jaric I. The epigenetic link between prenatal adverse environments and neurodevelopmental disorders. Genes. MDPI AG. 2017;8.

[5]Palma-Gudiel H, Córdova-Palomera A, Eixarch E, Deuschle M, Fañanás L. Maternal psychosocial stress during pregnancy alters the epigenetic signature of the glucocorticoid receptor gene promoter in their offspring: A meta‐analysis. Epigenetics. 2015;10:893–902.

[6]Bedregal P, Shand B, Santos MJ, Ventura‐Juncá P. Aportes de la epigenética en la comprensión del desarrollo del ser humano. Revista Medica de Chile. 2010;138:366–72.

[7]Cáceres R, Martínez‐Aguayo JC, Arancibia M, Sepúlveda E. Efectos neurobiológicos del estrés prenatal sobre el nuevo ser. Revista Chilena de Neuro‐Psiquiatria. 2017;55:103–13.

[8]Serpeloni F, Radtke K, de Assis SG, Henning F, Nätt D, Elbert T. Grandmaternal stress during pregnancy and DNA methylation of the third generation: An epigenome‐wide association study. Transl Psychiatry. 2017;7(8):e1202.

[9]Hoang MT, DeFina LF, Willis BL, Leonard DS, Weiner MF, Brown ES. Association between low serum 25-hydroxyvitamin D and depression in a large sample of healthy adults: The Cooper Center longitudinal study. Mayo Clin Proc. 2011;86(11):1050–5.

[10] Toranõ EG, Garciá MG, Fernández-Morera JL, Ninõ-Garciá P, Fernández AF. The impact of external factors on the
epigenome: In utero and over lifetime. BioMed Research International. 2016.

[11] Vieira SE. The health burden of pollution: The impact of prenatal exposure to air pollutants. Int J COPD. 2015
Jun;10:1111–21.

[12] Tarr H, Raymond RE, Tufts M. The effects of lead exposure on school outcome among children living and attending
Public Schools in Detroit, MI. Partners in Good Health.

[13] Watkins DJ, Sánchez BN, Téllez-Rojo MM, et al. Impact of phthalate and BPA exposure during in utero windows of susceptibility on reproductive hormones and sexual maturation in peripubertal males. Environ Heal A Glob Access Sci Source. 2017;16(1).

[14] Pullar J, Wickramasinghe K, Demaio AR, et al. The impact of maternal nutrition on offspring’s risk of non‐communicable diseases in adulthood: A systematic review. J Glob Health. 2019;9(2).

[15] McNulty H, Rollins M, Cassidy T, et al. Effect of continued folic acid supplementation beyond the first trimester of pregnancy on cognitive performance in the child: A follow‐up study from a randomized controlled trial (FASSTT Offspring Trial). BMC Med. 2019;17(1).

[16] Surendran S, Aji AS, Ariyasra U, et al. A nutrigenetic approach for investigating the relationship between vitamin B12 status and metabolic traits in Indonesian women. J Diabetes Metab Disord. 2019;

[17] Nowak E, Neuner A, Landgraf‐Rauf K, Schaub B. Asthma und allergieprävention. Pädiatrie up2date. 2017;12(02):143–59.

[18] Hornsby E, Pfeffer PE, Laranjo N, et al. Vitamin D supplementation during pregnancy: Effect on the neonatal immune system in a randomized controlled trial. J Allergy Clin Immunol. 2018;141(1):269‐278.e1.

[19] Fu WJ, Sinsheimer JS, Elston RC. Gene‐gene interaction in maternal and perinatal research. Journal of Biomedicine and Biotechnology. 2010.

[20] Workalemahu T, Grantz KL, Grewal J, Zhang C, Louis GMB, Tekola‐Ayele F. Genetic and environmental influences on fetal growth vary during sensitive periods in pregnancy. Sci Rep. 2018;8(1).

[21] Traglia M, Croen LA, Jones KL, et al. Cross‐genetic determination of maternal and neonatal immune mediators during pregnancy. Genome Med. 2018;10(1).

[22] Lunde A, Melve KK, Gjessing HK, Skjaerven R, Irgens LM. Genetic and environmental influences on birth weight, birth length, head circumference, and gestational age by use of population‐based parent‐offspring data. Am J Epidemiol. 2007;165(7):734–41.

[23] Januar V, Desoye G, Novakovic B, Cvitic S, Saffery R. Epigenetic regulation of human placental function and pregnancy outcome: Considerations for causal inference. American Journal of Obstetrics and Gynecology. 2015;213:S182–96.

[24] Teh AL, Pan H, Chen L, et al. The effect of genotype and in utero environment on interindividual variation in neonate DNA methylomes. Genome Res. 2014;24(7):1064–74.

[25] Neu J. Developmental aspects of maternal‐fetal, and infant gut microbiota and implications for long‐term health.
Matern Heal Neonatol Perinatol. 2015;1(1).

[26] Elgin TG, Kern SL, McElroy SJ. Development of the neonatal intestinal microbiome and its association with necrotizing enterocolitis. Clinical Therapeutics. 2016;38:706–15.

[27] Henderickx JGE, Zwittink RD, Van Lingen RA, Knol J, Belzer C. The preterm gut microbiota: An inconspicuous challenge in nutritional neonatal care. Frontiers in Cellular and Infection Microbiology. 2019;9.

[28] Tekieli L‐S, Radens CM, Williams BL, N Gabriela Gonzalez‐Perez ES, Hicks AL. Microbiome and antiviral immunity development of the neonatal intestinal maternal antibiotic treatment impacts. J Inmunol. 2016;196:3768–79.

[29] Zou Z‐H, Liu D, Li H‐D, et al. Prenatal and postnatal antibiotic exposure influences the gut microbiota of preterm infants in neonatal intensive care units. Ann Clin Microbiol Antimicrob. 2018;17(1):9.

[30] Tirone C, Pezza L, Paladini A, et al. Gut and lung microbiota in preterm infants: Immunological modulation and implication in neonatal outcomes. Frontiers in Immunology. 2019;10:2910.

Download
HTML
Cite
Share
statistics

497 Abstract Views

350 PDF Downloads