ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M.

ISSN: 2789-5009

Leading Ecuadorian research in science, technology, engineering, arts, and mathematics.

Bioactive Food Compounds As Epigenetic Regulators

Published date: Sep 09 2021

Journal Title: ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M.

Issue title: Volume 1, Issue 6

Pages: 1480 - 1490

DOI: 10.18502/espoch.v1i6.9636

Authors:

Iván Enrique Naranjo Logroñonaranjometropolitana@hotmail.comCarrera de Medicina, Facultad de Salud Pública, ESPOCH, Riobamba, Chimborazo, Ecuador

Anthony Alfonso Naranjo CoronelMédico Cirujano, COLPOMED Centro, Hospital del Día, Riobamba, Chimborazo, Ecuador

Ashley Carolina Cuzco MacíasCarrera de Medicina, Facultad de Salud Pública, ESPOCH, Riobamba, Chimborazo, Ecuador

Alison Tamara Ruiz ChicoCarrera de Medicina, Facultad de Salud Pública, ESPOCH, Riobamba, Chimborazo, Ecuador

Abstract:

Introduction: Nutrigenomics explores and defines the rapidly evolving field of interactions in the diet and genome, through the use of nutrition, proteomics, physiology, biochemistry and epigenomics to seek and explain the mutual interactions between genes and nutrients from a molecular approach. Objective: To summarize the evidence of the impact that bioactive compounds of food exerts on epigenetic events aimed primarily at disease prevention. Methods: A literature review was carried out on the main bioactive compounds of food as epigenetic regulators, in the following search engines: COCHRANE, PUBMED, MEDLINE, LILACS, SCIELO, CINAHL, EBSCO and SCOPUS. The synthetic analytical method was used. Results: 40 bibliographic sources were found, of which 33 scientific articles were used that provided relevant information on the subject and seven articles were excluded. Discussion: There is scientific evidence about various bioactive compounds that experience efficacy in disease prevention through epigenetic regulation. Conclusion: With the continuous progress of changes in lifestyle, it is necessary to study new molecules, which can potentially be used for disease prevention and find new drugs that can be crucial in the treatment of different diseases.

Keywords: bioactive, food, regulators, epigenetics.

RESUMEN

Introducción: La nutrigenómica explora y define el campo en rápida evolución de las interacciones en la dieta y el genoma, mediante el uso de la nutrición, proteómica, fisiología, bioquímica y epigenómica para buscar y explicar las mutuas interacciones existentes entre genes y nutrientes desde un enfoque molecular. Objetivo: Resumir la evidencia del impacto que ejercen los compuestos bioactivos de los alimentos sobre los eventos epigenéticos dirigido principalmente en la prevención de enfermedades. Métodos: Se realizó una revisión bibliográfica acerca de los principales compuestos bioactivos de los alimentos como reguladores epigenéticos, en los siguientes buscadores: COCHRANE, PUBMED, MEDLINE, LILACS, SCIELO, CINAHL, EBSCO y SCOPUS. Se empleó el método analítico sintético. Resultados: Se encontraron 40 fuentes bibliográficas, de los cuales se utilizaron 33 artículos científicos que aportaron información relevante del tema y se excluyeron siete artículos. Discusión: Existe evidencia científica acerca de diversos compuestos bioactivos que demuestran eficacia en la prevención de enfermedades mediante la regulación epigenética. Conclusiones: Con el avance continuo de los cambios en el estilo de vida, es necesario estudiar nuevas moléculas, que pueden usarse potencialmente para la prevención de enfermedades y encontrar nuevos medicamentos que pueden ser cruciales en el tratamiento de distintas enfermedades.

Palabras clave: bioactivos, alimentos, reguladores, epigenética.

References:

[1]Sales NMR, Pelegrini PB, Goersch MC. Nutrigenomics: Definitions and advances of this new science. J Clin Nutr Metab. 2014.

[2]Vahid F, Zand H, Nosrat‐Mirshekarlou E, Najafi R, Hekmatdoost A. The role dietary of bioactive compounds on the regulation of histone acetylases and deacetylases: A review. Gene Rep. Elsevier. 2015;562:8–15.

[3]Dennett C. The Future of Nutrigenomics. Today´s Dietit. 2017;19.

[4]Speckmann B, Grune T. Epigenetic effects of selenium and their implications for health. Epigenetics. 2015;10(3):179–90.

[5]Atwell LL, Beaver LM, Shannon J, Williams DE, Dashwood RH, Ho E. Epigenetic regulation by Sulforaphane: Opportunities for breast and prostate cancer chemoprevention. Curr Pharmacol Rep. 2015;1(2):102–11.

[6]Pandey A, Kulkarni YA, Gaikwad AB. Fruits, vegetables, and herbs: Bioactive foods in health promotion. Elsevier Inc.; 2016. Curcumin: The epigenetic therapy; p. 105–19.

[7]Boyanapalli SSS, Kong ANT. “Curcumin, the king of spices”: Epigenetic regulatory mechanisms in the prevention of cancer, neurological, and inflammatory diseases. Curr Pharmacol Rep. 2015;1(2):129–39.

[8]Reuter S, Gupta SC, Park B, Goel A, Aggarwal BB. Epigenetic changes induced by curcumin and other natural compounds. Genes Nutr. 2011;6(2):93–108.

[9]Azadand RSGK. Epigenetics of Curcumin: A Gifted Dietary Therapeutics Compound. J Carcinog Mutagen. 2015;06(01):1–6.

[10] Arora I, Sharma M, Tollefsbol TO. Combinatorial epigenetics impact of polyphenols and phytochemicals in cancer prevention and therapy. Int J Mol Cell Med. MDPI AG. 2019;20.

[11] Bag A, Bag N. Tea polyphenols and prevention of epigenetic aberrations in cancer. J Nat Sci Biol Med. 2018;9(1):2–5.

[12] Vanden BW. Epigenetic impact of dietary polyphenols in cancer chemoprevention: Lifelong remodeling of our epigenomes. harmacognosy Res. 2012;65(6):565–76.

[13] Martin SL, Kala R, Tollefsbol TO. Mechanisms for the inhibition of colon cancer cells by sulforaphane through epigenetic modulation of MicroRNA‐21 and human telomerase reverse Transcriptase (hTERT) Down‐regulation. Curr Cancer Drug Targets. 2017;18(1).

[14] Kaufman‐Szymczyk A, Majewski G, Lubecka‐Pietruszewska K, Fabianowska‐Majewska K. The role of sulforaphane in epigenetic mechanisms, including interdependence between histone modification and DNA methylation. Int J Mol Med Sci. 2015;16(12):29732–43.

[15] Su X, Jiang X, Meng L, Dong X, Shen Y, Xin Y. Anticancer activity of Sulforaphane: The epigenetic mechanisms and the Nrf2 signaling pathway. Oxid Med Cell Longev. 2018:1–10.

[16] Russo GL, Ungaro P. Epigenetics of Cancer Prevention. Elsevier; 2019. Epigenetic Mechanisms of Quercetin and other flavonoids in cancer therapy and prevention; p. 187–202.

[17] Alvarez MC, Maso V, Torello CO, Ferro KP, Saad STO. The polyphenol quercetin induces cell death in leukemia by targeting epigenetic regulators of pro‐apoptotic genes. J Clin Epigenet. 2018;10(1):139.

[18] Carlos-Reyes Á, López-González JS, Meneses-Flores M, et al. Dietary compounds as epigenetic modulating agents in cancer. Mol Front J. 2019;10(Mar).

[19] Busch C, Burkard M, Leischner C, Lauer UM, Frank J, Venturelli S. Epigenetic activities of flavonoids in the prevention and treatment of cancer. J Clin Epigenet. 2015;7(1).

[20] Silva LBAR, Pinheiro‐Castro N, Novaes GM, Pascoal G de FL, Ong TP. Bioactive food compounds, epigenetics and chronic disease prevention: Focus on early‐life interventions with polyphenols. Food Res Int. 2019;125.

[21] Berni CR, Di Costanzo M, Leone L. The epigenetic effects of butyrate: Potential therapeutic implications for clinical practice. J Clin Epigenet. 2012;4(1).

[22] Bishop KS, Xu H, Marlow G. Epigenetic regulation of gene expression induced by butyrate in colorectal cancer: Involvement of microRNA. Genet Epigenet. 2017;9.

[23] Terova G, Díaz N, Rimoldi S, Ceccotti C, Gliozheni E, Piferrer F. Effects of Sodium Butyrate Treatment on histone modifications and the expression of genes related to Epigenetic regulatory mechanisms and immune response in European Sea Bass (Dicentrarchus Labrax) fed a plant-based diet. PLoS One. 2016;11(7).

[24] Lu H‐Y, Somuncu B, Zhu J, Muftuoglu M, Cheng W‐H. Handbook of Nutrition, Diet, and Epigenetics. Springer International Publishing; 2017. Selenoproteins and Epigenetic Regulation in Mammals; p. 1–15.

[25] Hardy TM, Tollefsbol TO. Epigenetic diet: Impact on the epigenome and cancer. Epigenomics. 2011;3(4):503–18.

[26] Jabłońska E, Reszka E. Selenium and epigenetics in cancer: Focus on DNA methylation. Nat Cancer. Academic Press Inc. 2017;136:193–234.

[27] Bermingham EN, Bassett SA, Young W, et al. Post‐weaning selenium and folate supplementation affects gene and protein expression and global DNA methylation in mice fed high‐fat diets. BMC Med Genomics. 2013;6.

[28] Celik E, Sanlier N. Effects of nutrient and bioactive food components on Alzheimer’s disease and epigenetic. Crit Rev Food Sci Nutr. 2019;59(1):102–13.

[29] Crider KS, Yang TP, Berry RJ, Bailey LB. Folate and DNA Methylation: A review of molecular mechanisms and the evidence for Folate’s Role. Adv Nutr. 2012;3(1):21–38.

[30] Kok DE, Steegenga WT, McKay JA. Folate and epigenetics: Why we should not forget bacterial biosynthesis. Epigenomics. 2018;10(9):1147–50.

[31] Lévesque N, Leclerc D, Rozen R. Br J Cancer. Springer International Publishing; 2017. Folate and epigenetics: Colorectal cancer risk and detection; p. 1–19.

[32] Montgomery M, Srinivasan A. Epigenetic gene regulation by dietary compounds in cancer prevention. Adv Nutr. 2019;10(6):1012–28.

[33] Pavlidis C, Patrinos GP, Katsila T. Nutrigenomics: A controversy. Appl Transl Genom. 2015;4:50–3.

Download
HTML
Cite
Share
statistics

586 Abstract Views

649 PDF Downloads