ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M.

ISSN: 2789-5009

Leading Ecuadorian research in science, technology, engineering, arts, and mathematics.

Effect of Threonine and the Bioactive Component of Saccharomyces Cerevisiae on the Productive Performance of the Broiler Cobb 500

Published date: Sep 02 2021

Journal Title: ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M.

Issue title: Volume 1, Issue 5

Pages: 1370 - 1384

DOI: 10.18502/espoch.v1i5.9579

Authors:

J. Encalada ÁlvarezInvestigadora independiente

P. Toalombo Vargasptoalombo@espoch.edu.ecCarrera de Zootecnia, Facultad de Ciencias Pecuarias, Escuela Superior de Chimborazo, Riobamba, Ecuador

C. Vimos AbarcaCarrera de Zootecnia, Facultad de Ciencias Pecuarias, Escuela Superior de Chimborazo, Riobamba, Ecuador

J. Trujillo VillacísCarrera de Zootecnia, Facultad de Ciencias Pecuarias, Escuela Superior de Chimborazo, Riobamba, Ecuador

L. Silva DeleyMedicina Veterinaria, Universidad Técnica de Cotopaxi, Latacunga, Ecuador

Abstract:

This study was conducted in Chimborazo province, Riobamba Canton to evaluate the effect of threonine and the bioactive component of Saccharomyces cerevisiae on the productive performance of the broiler Cobb 500. A total of 270 one-day-old broiler chicken of both sexes were included, which corresponded to an experimental unit size of 15 birds. Two growth promoters were used for the treatments -- T1: Threonine (aminoacid) 200 g/Tn; and T2: bioactive oligosaccharides, obtained from the cell wall of selected strains of S. Cerevisiae (probiotic) 750 g/Tn. These were compared to a control group. The data were analyzed through Analysis of Variance (ADEVA). The separation of means was performed using the Tukey statistic at a level of significance of p < 0.05 and p < 0.01. The data were processed using the Infostat software version 2010. The results showed that the best productive yields were with treatment 2; the values for this treatment were: weight at 28 days: 1369.42 g; weight gain at 28 days: 48.90 g; food conversion at 28 days: 1.39 points; carcass weight: 2527.05 g; and yield to the carcass: 83.85%. Through the economic analysis, it was determined that the highest cost-benefit index was 1.30 USD with the application of T2. So according to the results, a better use of the nutrients that are present in the feed is achieved when bioactive components of S. cerevisiae are supplied in the diet of broiler chickens.

Keywords: Threonine, Saccharomyces cerevisiae, productive performance, broiler, Cobb 500.

RESUMEN

Se realizó un experimento en la provincia de Chimborazo, Cantón Riobamba, para evaluar los efectos de treonina y componentes bioactivos de Saccharomyces cerevisiae sobre el comportamiento productivo en aves Cobb 500. Se utilizaron 270 pollitos mixtos Cobb 500 de un día de edad de ambos sexos, con un tamaño de unidad experimental de 15 aves. Para los tratamientos se manejaron dos promotores de crecimiento, T1: Treonina (aminoácido) 200 g/Tn y T2: Oligosacáridos bioactivos, obtenidos a partir de la pared celular de cepas seleccionadas de S. Cerevisiae750 g/Tn; frente a un testigo (T0). Los datos obtenidos fueron sometidos a Análisis de Varianza (ADEVA); la separación de medias se realizó mediante el estadístico Tukey a un nivel de significancia (p < 0,05) y (p < 0,01); los datos se procesaron mediante el software Infostat versión 2010. Los resultados muestran los mejores rendimientos productivos con el Tratamiento 2, para los parámetros: peso a los 28 días 1369,42 g; ganancia de peso a los 28 días 48,90 g; y conversión alimenticia a los 28 días con 1,39 puntos; así como peso a la canal 2527,05 g; y rendimiento a la canal 83,85%. Mediante el análisis económico se determinó que el mayor índice beneficio costo fue de 1,30 USD con la aplicación del T2. Lo que brinda un indicativo que mediante el suministro de componentes bioactivos de S. cerevisiae en la dieta de pollos broiler, se logra un mejor aprovechamiento de los nutrientes que se encuentran presentes en el alimento, lo que se refleja en los parámetros productivos.

Palabras clave: treonina, Saccharomyces cerevisiae, comportamiento productivo, broilers, Cobb 500.

References:

[1] Borey M et al., Broilers divergently selected for digestibility differ for their digestive microbial ecosystems. PloS One. 2020;15(5):e0232418.

[2] Yirga H. The use of probiotics in animal nutrition. J. Prob. Health, 2015;3(2):1-10.

[3] Diarra MS, Malouin F. Antibiotics in Canadian poultry productions and anticipated alternatives. Frontiers in microbiology. 2014;5:282.

[4] Qureshi S et al. Histomorphological studies of broiler chicken fed diets supplemented with either raw or enzyme treated dandelion leaves and fenugreek seeds. Vet World. 2016;9(3):269-75.

[5] Pinto S et al. Acción de promotores de crecimiento sobre la mucosa intestinal de pollos parrilleros Action of growth promoters on the intestinal mucosa of broiler chickens.

[6] Muñoz JEM et al. Efecto de la fuente lipídica en la alimentación de pollos para carne en zona de trópico. Revista Investigaciones Agropecuarias. 2020;2(2):31-48.

[7] Patience JF. The influence of dietary energy on feed efficiency in grow-finish swine, in Feed efficiency in swine. Springer; 2012. p. 101-129.

[8] Ewing WN. The living gut. Nottingham University Press; 2009.

[9] Willing BP, Malik G, van Kessel AG. Sustainable swine nutrition. 2012. Nutrition and gut health in swine. p. 197-213.

[10] Rodríguez-Frías JA. Integridad intestinal del pollo de engorde. 2004.

[11] Rougière N, Carré B. Comparison of gastrointestinal transit times between chickens from D+ and D- genetic lines selected for divergent digestion efficiency. Animal. 2010;4(11):1861-72.

[12] Blottière HM et al. Human intestinal metagenomics: State of the art and future. Curr Opin Microbiol. 2013;16(3):232-9.

[13] Sommer F, Bäckhed F. The gut microbiota--masters of host development and physiology. Nat Rev Microbiol. 2013;11(4):227-38.

[14] Hanning I, Diaz-Sanchez S. The functionality of the gastrointestinal microbiome in non-human animals. Microbiome. 2015;3:51.

[15] Broom LJ, Kogut MH. The role of the gut microbiome in shaping the immune system of chickens. Vet Immunol Immunopathol. 2018;204:44-51.

[16] Suárez-Machín C, Garrido-Carralero NA, Guevara-Rodríguez CA. Levadura Saccharomyces cerevisiae y la producción de alcohol. Revisión bibliográfica. 2016;50(1):20-28.

[17] Gilka G, Kelly PY. Toxicity comparison of somo animal wastes. Water, Air, Soil pollution. 2015:113-117.

[18] Uscanga BRA, Pacheco JRS, Francios J. Estudio de la variación de la composición de los polisacáridos contenidos en la pared celular de la levadura. Saccharomyces Cerevisiae. e-Gnosis. 2005;3.

[19] Klis FM et al. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS microbiology reviews. 2002;26(3):239-256.

[20] Montagne L, Pluske JR, Hampson DJ. A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Animal feed science and technology. 2003;108(1-4):95-117.

[21] Kim YS, Ho SB. Intestinal goblet cells and mucins in health and disease: Recent insights and progress. Current gastroenterology reports. 2010;12(5):319-330.

[22] Wils-Plotz EL, Dilger RN. Combined dietary effects of supplemental threonine and purified fiber on growth performance and intestinal health of young chicks. Poultry Science. 2013;92(3):726-734.

[23] Chen YP et al., Effects of threonine supplementation on the growth performance, immunity, oxidative status, intestinal integrity, and barrier function of broilers at the early age. Poultry Science. 2017;96(2):405-413.

[24] Law GK et al. Adequate oral threonine is critical for mucin production and gut function in neonatal piglets. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2007;292(5):1293-1301.

[25] Wang W et al. Optimal dietary true ileal digestible threonine for supporting the mucosal barrier in small intestine of weanling pigs. The Journal of nutrition. 2010;140(5):981-986.

[26] Azzam MMM et al. Effect of supplemental L-threonine on mucin 2 gene expression and intestine mucosal immune and digestive enzymes activities of laying hens in environments with high temperature and humidity. Poultry Science. 2011;90(10):2251-2256.

[27] Azzam MMM et al. Influence of L–threonine supplementation on goblet cell numbers, histological structure and antioxidant enzyme activities of laying hens reared in a hot and humid climate. British poultry science. 2012;53(5):640-645.

[28] Ren M et al. Increased levels of standardized ileal digestible threonine attenuate intestinal damage and immune responses in Escherichia coli K88+ challenged weaned piglets. Animal Feed Science and Technology. 2014;195:67-75.

[29] Trevisi P et al. Effect of added dietary threonine on growth performance, health, immunity and gastrointestinal function of weaning pigs with differing genetic susceptibility to E scherichia coli infection and challenged with E. coli K88ac. Journal of animal physiology and animal nutrition. 2015;99(3):511-520.

[30] Parmentier HK et al., Serum haemolytic complement activities in 11 different MHC (B) typed chicken lines. Veterinary Immunology and Immunopathology. 2004;100(1-2):25-32.

[31] Wils-Plotz EL, Jenkins MC, Dilger RN. Modulation of the intestinal environment, innate immune response, and barrier function by dietary threonine and purified fiber during a coccidiosis challenge in broiler chicks. Poultry Science. 2013;92(3):735-745.

[32] Macavilca Y, Vergara V, Valverde N. Efecto de un concentrado proteico a base de subproductos de camal avícola sobre el comportamiento productivo de pollos de carne. Agroindustrial Science. 2020;10(2):129-135.

[33] Upendra HA, Yathiraj S. Effect of supplementing probiotics and Mannan Oligosaccharide on body weight, feed conversion ratio and livability in broiler chicks. Indian veterinary journal. 2003;80(10):1075-1077.

[34] Waldroup PW, Fritts CA, Yan F. Utilization of Bio-Mos® mannan oligosaccharide and Bioplex® copper in broiler diets. International Journal of Poultry Science. 2003;2(1):44-52.

[35] Santin, E., et al., Evaluation of the efficacy of Saccharomyces cerevisiae cell wall to ameliorate the toxic effects of aflatoxin in broilers. International Journal of Poultry Science, 2003. 2(5): p. 341-344.

[36] Saadatmand N, Toghyani M, Gheisari A. Effects of dietary fiber and threonine on performance, intestinal morphology and immune responses in broiler chickens. Animal Nutrition. 2019;5(3):248-255.

[37] Alarcon AF. Evaluacion del efecto de tres niveles de treonina en ganancia de peso en pollos parrilleros Linea Ross 308 en la colonia Florida provincia Caranavi La Paz. 2016.

[38] Dildey D et al. Effect of mannan oligosaccharide supplementation on performance and health of Holstein calves. Journal of Dairy Science. 1997;80(suppl 1);188-189.

[39] Reyes-Sánchez N et al. Rendimiento de la canal y morfometría del tracto gastrointestinal de broilers suplementados con pared celular de levadura. La Calera. 2014;14(22):33-37.

[40] López RM. Las paredes celulares de levadura de Saccharomyces cerevisiae: Un aditivo natural capaz de mejorar la productvidad y salud del pollo de engorde. 2008.

[41] Menocal JA et al. Efecto de paredes celulares (Saccharomyces cerevisiae) en el alimento de pollo de engorda sobre los parámetros productivos. Revista Mexicana de Ciencias Pecuarias. 2005;43(2):155-162.

[42] Zhang AW et al., Effects of yeast (Saccharomyces cerevisiae) cell components on growth performance, meat quality, and ileal mucosa development of broiler chicks. Poultry science. 2005;84(7):1015-1021.

[43] Pérez-Sotelo LS et al. In vitro evaluation of the binding capacity of Saccharomyces cerevisiae Sc47 to adhere to the wall of Salmonella spp. Rev Latinoam Microbiol. 2005;47(3-4):70-75.

[44] Khati BM et al. Effect of low protein level supplemented with or without yeast (Saccharomyces cerevisiae) on hematological and immunological profile of broiler quails. Royal Veterinary Journal of India. 2007;3(2):131-136.

[45] Lahnborg G, Hedström KG, Nord CE. The effect of glucan--a host resistance activator--and ampicillin on experimental intraabdominal sepsis. Journal of the Reticuloendothelial Society. 1982;32(5):347-353.

[46] Saleh EA et al. Effects of dietary nutrient density on performance and carcass quality of male broilers grown for further processing. International Journal of Poultry Science. 2004.

[47] Jafari M et al. Evaluation of protein and energy quality of poultry by-product meal using poultry assays. African Journal of Agricultural Research. 2011;6(6):1407-1412.

[48] Hossain MH, Ahammad MU, Howlider MAR. Replacement of fish meal by broiler offal in broiler diet. International Journal of Poultry Science. 2003;2(2):159-163.

[49] Hassanabadi A, Amanloo H, Zamanian M. Effects of substitution of soybean meal with poultry by-product meal on broiler chickens performance. Journal of Animal and Veterinary Advances. 2008;7(3):303-307.

[50] Yang Y, Iji PA, Choct M. Effects of different dietary levels of mannanoligosaccharide on growth performance and gut development of broiler chickens. Asian-Australasian Journal of Animal Sciences. 2007;20(7):1084-1091.

[51] Liao SF, Nyachoti M. Using probiotics to improve swine gut health and nutrient utilization. Animal Nutrition. 2017;3(4):331-343.

[52] Cruickshank G. Gut microflora the key healthy broiler growing. Poultry World. 2002;156(7):14.

[53] Spring P et al. The effects of dietary mannaoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of salmonella-challenged broiler chicks. Poultry science. 2000;79(2):205-211.

[54] Lemme A, Ravindran V, Bryden WL. Ileal digestibility of amino acids in feed ingredients for broilers. World's Poultry Science Journal. 2004;60(4):423-438.

[55] Donato DCZ et al. Manipulation of dietary methionine+ cysteine and threonine in broilers significantly decreases environmental nitrogen excretion. Animal. 2016;10(6):903-910.

[56] Hernández NL, Téllez GA, Nieto CJA. Evaluación de tres levaduras provenientes de ecosistemas colombianos en la alimentación de pollos de engorde. Ciencia & Tecnología Agropecuaria. 2009;10(1):102-114.

[57] Peralta MF, Miazzo RD, Nilson A. Levadura de cerveza (Saccharomyces cerevisiae) en la alimentación de pollos de carne. REDVET. Revista electrónica de Veterinaria. 2008;9(10):1-11.

[58] Karaoglu M, Durdag H. The influence of dietary probiotic (Saccharomyces cerevisiae) supplementation and different slaughter age on the performance, slaughter and carcass properties of broilers. International Journal of Poultry Science. 2005;4(5):309-316.

[59] Lee BD et al. Effects of dietary yeast (Saccharomyces cerevisiae) components on growth performance and cholesterol metabolism in broiler chickens. Kor. J. Poult. Sci. 2005;32:49-54.

[60] Perdomo MC, Vargas RE, Campos J. Valor nutritivo de la levadura de cervecería (Saccharomyces cerevisiae) y de sus derivados, extracto y pared celular, en la alimentación aviar. Archivos Latinoamericanos de Producción Animal. 2004;12(5):89-95

[61] Miazzo RD, Peralta MF. Calidad de la canal de pollos parrilleros que recibieron Levadura de Cerveza (S. cerevisiae) en sustitución del núcleo vitamínico-mineral. REDVET. Revista Electrónica de Veterinaria. 2006;7(11):1-7.

[62] Miazzo RD et al. Calidad de la canal de broilers que recibieron levadura de cerveza (S. cerevisiae) en las etapas de iniciación y terminación. XX Cong. Latinoam. De Avicultura: NU; 2007.

[63] Castro M. Comportamiento productivo en pollos de engorde alimentados con niveles crecientes de alcachofa (Cynara scolymus). Revista Colombiana de Ciencia Animal. 2016;9(1).

Download
HTML
Cite
Share
statistics

440 Abstract Views

315 PDF Downloads