ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M.

ISSN: 2789-5009

Leading Ecuadorian research in science, technology, engineering, arts, and mathematics.

Bacteriophage Growth Promoters in Poultry

Published date: Sep 02 2021

Journal Title: ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M.

Issue title: Volume 1, Issue 5

Pages: 1288 - 1300

DOI: 10.18502/espoch.v1i5.9566

Authors:

C. Honorio Javes Dpto. de Alimentación animal Facultad de Medicina Veterinaria y Zootecnia de la Universidad Privada Antenor Orrego, Trujillo, Peru

Y. Vallenas Sánchezyvallenass1@upao.edu.peDpto. de Alimentación animal Facultad de Medicina Veterinaria y Zootecnia de la Universidad Privada Antenor Orrego, Trujillo, Peru

Abstract:

In recent years, there has been an increase in bacterial resistance to antimicrobials found in both animals and humans, and in some countries, the use of antibiotics as growth promoters has been prohibited. Therefore, this article reviewed bacteriophages (viruses that infect bacteria) as a substitute for antibiotic-type growth promoters, since they can help control the main bacterial pathogens such as Salmonella and E. coli that affect birds, improve production parameters in broilers and laying hens, and are more efficient than antibiotic-type growth promoters.

Keywords:   bacteriophages, promoter’s growth, antibiotics, poultry.

RESUMEN

En los últimos años, la resistencia bacteriana a los antimicrobianos encontrada tanto en animales como en humanos y la prohibición del uso de antibióticos como promotores de crecimiento en algunos países son las nuevas variables a tener en cuenta. Por lo tanto, este artículo revisa los bacteriófagos (virus que infectan bacterias) como sustituto de promotores de crecimiento tipo antibiótico, ya que pueden ayudar a controlar los principales patógenos bacterianos como Salmonella y E. coli que afectan a las aves, mejoran los parámetros productivos en broilers y gallinas de postura y son más eficientes que los promotores de crecimiento tipo antibiótico.

Palabras clave: bacteriófagos, promotores de crecimiento, antibióticos, avicultura.

References:

[1] Barrow P, Neto O. Pullorum disease and fowl typhoid - New thoughts on old diseases: A review. Avian Pathol. 2011;40(1):1-13.

[2] Berchieri A, Murphy C, Marston K, Barrow P. Observations on the persistence and vertical transmission of Salmonella enterica serovars Pullorum and Gallinarum in chickens: Effect of bacterial and host genetic background. Avian Pathol. 2001;30(3):221–231.

[3] Basnet H, Kwon H, Cho S, Kim S, Yoo H, Park Y. Reproduction of fowl typhoid by respiratory challenge with Salmonella gallinarum. Avian Dis. 2008;52(1):156-159.

[4] Kabir S. Avian colibacillosis and salmonellosis: a closer look at epidemiology, pathogenesis, diagnosis, control and public health concerns. Int J Environ Res Public Health. 2010;7(1):89–114.

[5] Furtula V, Farrell E, Diarrassouba F, Rempel H, Pritchard J, Diarra M. Veterinary pharmaceuticals and antibiotic resistance of Escherichia coli isolates in poultry litter from commercial farms and controlled feeding trials. Poult Sci. 2010;89(1):180-188.

[6] Forgetta V, Rempel H, Malouin F, Vaillancourt Jr R, Topp E, Dewar K. Pathogenic and multidrug- resistant Escherichia fergusonii from broiler chicken. Poult Sci. 2012;91(2): 512-525.

[7] Manzetti S, Ghisi R. The environmental release and fate of antibiotics. Mar Pollut Bull. 2014;79(1):7-15.

[8] Marti E, Variatza E, Balcazar J. The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends Microbiol. 2014;22(1):36-41.

[9] Carvalho I, Santos L. Antibiotics in the aquatic environments: A review of the European scenario. Environ Int. 2016;94:736-757.

[10] Ngamwongsatit B, Tanomsridachchai W, Suthienkul O, Urairong S, Navasakuljinda W, Janvilisri T. Multidrug resistance in Clostridium perfringens isolated from diarrheal neonatal piglets in Thailand. Anaerobe. 2016;38:88–93.

[11] Zwe Y, Tang V, Aung K, Gutiérrez R, Ng L, Yuk H-G. Prevalence, sequence types, antibiotic resistance and, gyrA mutations of Salmonella isolated from retail fresh chicken meat in Singapore. Food Control. 2018;90:233–240.

[12] ESVAC. Sales of veterinary antimicrobial agents in 30 european countries in 2015. Trends from 2010 to 2015. 2017. Seventh Esvac Report. Ema/184855/2017.

[13] Gebru E, Lee J, Son J et al. Effect of probiotic-, bacteriophage-, or organic acid-supplemented feeds or fermented soybean meal on the growth performance, acute-phase response, and bacterial shedding of grower pigs challenged with Salmonella enterica serotype Typhimurium1. Journal of Animal Science. 2010;88(12):3880-3886.

[14] Breitbart M, Rohwer F. Here a virus, there a virus, everywhere the same virus? Trends Microbiol. 2005;13(6):278–284.

[15] Weinbauer M. Ecology of prokaryotic viruses. FEMS Microbiol Rev. 2004;28(2):127–181.

[16] Colomer-Lluch M, Jofre J, Muniesa M. Antibiotic resistance genes in the bacteriophage DNA fraction of environmental samples. PLoS One. 2011;6(3):e17549.

[17] Wipf J, Schwendener S, Perreten V. The novel macrolide-lincosamide-streptogramin B resistance gene erm (44) Is associated with a prophage in Staphylococcus xylosus. Antimicrob. Agents Chemother. 2014;58:6133–6138.

[18] Ackermann H. Bacteriophage taxonomy. Microbiol Aust. 2011;32(2): 90–94.

[19] Santos S, Costa A, Carvalho C, Nóbrega F, Azeredo J. Exploiting bacteriophage proteomes: The hidden biotechnological potential. trends in biotechnology. 2018;36(9):966-984.

[20] Hong S, Jeong J, Lee J, Kim S, Min W, Myung H. Therapeutic effects of bacteriophages against salmonella gallinarum infection in chickens. J. Microbiol. Biotechnol. 2013;23(10):1478–1483.

[21] Seo B.-J, Song E.-T, Lee K et al. Evaluation of the broad-spectrum lytic capability of bacteriophage cocktails against various Salmonella serovars and their effects on weaned pigs infected with Salmonella Typhimurium. Journal of Veterinary Medical Science. 2018;80(6): 851–860.

[22] Kaikabo A, Abdul Karim S, Abas F. Evaluation of the efficacy of chitosan nanoparticles loaded ΦKAZ14 bacteriophage in the biological control of colibacillosis in chickens. Poultry Science. 2017;96(2):295–302.

[23] Tie K, Yuan Y, Yan S et al. Isolation and identification of Salmonella pullorum bacteriophage YSP2 and its use as a therapy for chicken diarrhea. Virus Genes. 2018;54(3):446–456.

[24] Vaz C, Voss-Rech D, Alves L, Coldebella A, Brentano L, Trevisol I. Effect of time of therapy with wild-type lytic bacteriophages on the reduction of Salmonella Enteritidis in broiler chickens. Veterinary Microbiology. 2019;240:108527.

[25] Colom J, Cano-Sarabia M, Otero J, Cortés P, Maspoch D, Llagostera M. Liposome-encapsulated bacteriophages for enhanced oral phage therapy against Salmonella spp. Appl Environ Microbiol. 2015;81(14):4841–4849.

[26] Carvalho C, Gannon B, Halfhide D et al. The in vivo efficacy of two administration routes of a phage cocktail to reduce numbers of Campylobacter coli and Campylobacter jejuni in chickens. BMC Microbiology. 2010;10(1): 232-343.

[27] Fischer S, Kittler S, Klein G, Glünder G. 2013. Impact of a single phage and a phage cocktail application in broilers on reduction of campylobacter jejuni and development of resistance. PLoS ONE. 2013;8(10):78543.

[28] Sørensen M, Gencay Y, Birk T, Baldvinsson S, Jäckel C, Hammerl J. Primary isolation strain determines both phage type and receptors recognised by campylobacter jejuni bacteriophages. PLoS ONE 2015;10(1):0116287.

[29] Richards P, Connerton P, Connerton I. Phage biocontrol of campylobacter jejuni in chickens does not produce collateral effects on the gut microbiota. Front. Microbiol. 2019;10:476-486.

[30] Brockhurst M, Koskella B, Zhang Q.-G. Bacteriophages. Harper D, Abedon S, Burrowes B, McConville M. Springer International Publishing; 2017. Bacteria-Phage antagonistic coevolution and the implications for phage therapy. p. 1–21.

[31] Munsch-Alatossava P, Alatossava T. 2013. The extracellular phage-host interactions involved in the bacteriophage LL-H infection of Lactobacillus delbrueckii ssp. lactis ATCC 15808. Front Microbiol. 2013;4:408.

[32] Wang C, Li P, Niu W et al. Protective and therapeutic application of the depolymerase derived from a novel KN1 genotype of Klebsiella pneumoniae bacteriophage in mice. Research in Microbiology. 2019;170(3):156-164.

[33] Malone LM, Warring SL, Jackson SA et al. Un fago gigante que forma una estructura similar a un núcleo evade la orientación al ADN CRISPR-Cas, pero es vulnerable a la inmunidad basada en ARN de tipo III. Nat Microbiol. 2020;5(1): 48–55.

[34] Quiroz-Guzmán E, Peña-Rodriguez A, Vázquez-Juárez R., Barajas-Sandoval DR, Balcázar JL, Martínez- Díaz SF. Bacteriophage cocktails as an environmentally-friendly approach to prevent Vibrio parahaemolyticus and Vibrio harveyi infections in brine shrimp (Artemia franciscana) production. Aquaculture. 2018;492:273–279.

[35] Mion S, Rémy B, Plener L, Brégeon F, Chabrière E, Daudé D. Quorum quenching lactonase strengthens bacteriophage and antibiotic arsenal against pseudomonas aeruginosa clinical isolates. Front. Microbiol. 2019;10:2049.

[36] Wang J, Yan L, Lee J, Kim I. 2013. Evaluation of bacteriophage supplementation on growth performance, blood characteristics, relative organ weight, breast muscle characteristics and excreta microbial shedding in broilers. Asian-Australas J Anim Sci. 2013;26(4):573-578.

[37] Kim K, Lee G, Jang J, Kim J, Kim Y. Evaluation of Anti-SE Bacteriophage as Feed Additives to Prevent Salmonella Enteritidis (SE) in Broiler. Asian-Aust. J. Anim. Sci. 2013;26(3):386-393.

[38] Kim J, Kim J, Lee B et al. Effect of dietary supplementation of bacteriophage on growth performance and cecal bacterial populations in broiler chickens raised in different housing systems. Livestock Science. 2014;170:137-141.

[39] Lee SH, Hosseindoust AR, Kim JS et al. Bacteriophages as a promising anti-pathogenic option in creep-feed for suckling piglets: Targeted to control Clostridium spp. and coliforms faecal shedding. Livestock Science. 2016;191:161–164.

[40] Kim J, Hosseindoust A, Lee S et al. Bacteriophage cocktail and multi-strain probiotics in the feed for weanling pigs: effects on intestine morphology and targeted intestinal coliforms and Clostridium. Animal. 2017;11(01):45–53.

[41] Zhao P, Baek H, Kim I. Effects of bacteriophage supplementation on egg performance, egg quality, excreta microflora, and moisture content in laying hens. Asian-Australasian Journal of Animal Sciences. 2012;25(7):1015–1020.

[42] Ahmadi M, Torshizi M, Rahimi S, Dennehy J. 2016. Prophylactic bacteriophage administration more effective than post-infection administration in reducing salmonella enterica serovar enteritidis shedding in Quail. Frontiers in Microbiology. 2016;7:1253-1262.

[43] Clavijo V, Baquero D, Hernandez S et al. Phage cocktail SalmoFREE® reduces Salmonella on a commercial broiler farm. Poultry Science. 2019;98(10):5054–5063.

[44] Schulz P, Robak S, Dastych J, Krzysztof Siwicki A. Influence of bacteriophages cocktail on European eel (Anguilla anguilla) immunity and survival after experimental challenge. Fish Shellfish Immun. 2018;84:28-37.

[45] Yan L, Hong S, Kim H. Effect of bacteriophage supplementation on the growth performance, nutrient digestibility, blood characteristics, and fecal microbial shedding in growing pigs. Asian-Aust. J. Anim. Sci. 2012;25(10):1451 – 1456.

[46] Skurnik M, Strauch E. Phage therapy: Facts and fiction. Int J Med Microbiol. 2006;296(1):5–14.

[47] Wagner PL, Waldor MK. Bacteriophage control of bacterial virulence. Infect Immun. 2002;70(8):3985–3993.

Download
HTML
Cite
Share
statistics

454 Abstract Views

354 PDF Downloads