ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M.

ISSN: 2789-5009

Leading Ecuadorian research in science, technology, engineering, arts, and mathematics.

Dynamics of the Potato Root (Solanum Spp.) Under Different Levels of Soil Moisture, in the Geographical Region of Riobamba, Ecuador

Published date: Aug 26 2021

Journal Title: ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M.

Issue title: Volume 1, Issue 1

Pages: 294–312

DOI: 10.18502/espoch.v1i1.9565

Authors:

R. Peña Murillorobinson.pena@espoch.edu.ecGrupo de Investigación y Transferencia de Tecnología en Recursos Hídricos (GITRH), Centro Experimental del Riego (CER), Facultad de Recursos Naturales, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador

J. Velasteguí CáceresGrupo de Investigación y Transferencia de Tecnología en Recursos Hídricos (GITRH), Centro Experimental del Riego (CER), Facultad de Recursos Naturales, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador

J. León RuizGrupo de Investigación y Transferencia de Tecnología en Recursos Hídricos (GITRH), Centro Experimental del Riego (CER), Facultad de Recursos Naturales, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador

Abstract:

The root system of the potato (Solanum spp.) is often characterized as superficial and inefficient, with little capacity to extract water from the soil. Through a geographical study of the study area and root dynamics, the root behavior of the Victoria variety in Riobamba, Ecuador was evaluated, with the aim of assessing the applicability of “drip irrigation strategies with different levels of soil moisture” that allow the optimization of the water resource and the degree of tolerance of the crop to the lack of water through three treatments, 25%, 50% and 75%, between the levels of field capacity and permanent wilting point that are equivalent to 12.25% (T1), 10.5% (T2) and 8.75% (T3) of sandy loam soil moisture. Through front-wall rhizotrons the gravimetric method for recording soil moisture, and the Scheffé test, with a randomized block experimental design, were completed. The maximum root development was reached 110 days after the cultivation was established, with 77.5 cm (T3) at lower water availability. The maximum yield was reached at 132 days, with 34.72 t/ha (T1), followed by 32.11 t/ha (T2) with 126 days, and 28.45 t/ha (T3) with 121 days. Therefore, it is concluded that the maximum permissible humidity level for the variety is 10.5%, since lower levels would generate large losses.

Keywords: rizotron, drip irrigation, soil moisture, geographical analysis.

Resumen

El sistema de raíces de la papa (Solanum spp.) a menudo se caracteriza por ser superficial e ineficiente, con poca capacidad para extraer agua del suelo. Mediante un estudio geográfico del área de estudio y la dinámica radicular se evalúa el comportamiento radicular de la variedad victoria en Riobamba-Ecuador, con el objetivo de valorar la aplicabilidad de estrategias de “riego por goteo con diferentes niveles de humedad en el suelo” que permitan la optimización del recurso hídrico y el grado de tolerancia del cultivo a la falta de agua mediante tres tratamientos 25%, 50% y 75% entre los niveles de capacidad de campo y punto de marchitez permanente que equivalen a 12,25%(T1), 10,5%(T2) y 8,75%(T3) de humedad del suelo franco arenoso. A través de rizotrones de pared frontal, el método gravimétrico para el registro de la humedad del suelo y la prueba de Scheffé, con un diseño experimental de bloques completos al azar. El máximo desarrollo radicular se alcanzó a los 110 días de establecido el cultivo con 77,5cm (T3) a una menor disponibilidad de agua. El rendimiento máximo se alcanzó a los 132 días con 34,72t/ha (T1), seguido de 32,11t/ha (T2) con 126 días y 28,45t/ha (T3) con 121 días. Por lo tanto, se concluye que el máximo nivel de humedad permisible para la variedad es 10,5%, ya que niveles inferiores generarían grandes pérdidas.

Palabras claves: rizotrón, riego por goteo, humedad del suelo, análisis geográfico.

References:

[1] FAO. Statistical water [Base de datos FAOSTAT]. Roma: FAO; 2016.

[2] Farooq M. Función fisiológica de forma exógena aplicada glycinebetaine en la mejora de tolerancia a la sequía de la aromática de grano fino arroz. Agronomy Journal. 2008;194:325-333.

[3] FAO. New light on a hidden treasure. Roma: Estudio FAO Riego y Drenaje 56. Roma: FAO; 2009.

[4] Taylor H, Ratliff L. Root elongation rates of cotton and peanuts as a function of soil strength and soil water content. Soil Science. 1969;108:113–119.

[5] Thiele G, Theisen K, Bonierbale M, Walker T. Targeting the poor and hungry with potato science. Journal Potato.2010; 37:75–86.

[6] Thompson A, Andrews J, Mulholland B, Mckee J, Hilton H, Horridge J. Overproduction of abscisic acid in tomato increases transpiration efficiency and root hydraulic conductivity and influences leaf expansion. P. Physiology. 2007;43:105–117.

[7] Van Loon CD. The effect of water stress on potato growth, development, and yield. Am. Potato J. 1981;58:51–69.

[8] Lynch JP. Turner review no, 14 roots of the second green revolution. Aust Journal. Bot. 2007;55:493–512.

[9] Hodge A. The plastic plant: Root responses to heterogeneous supplies of nutrients. New Phytol. 2004;162:9–24.

[10] Jaleel C. Estrés hídrico déficit efectos sobre el metabolismo de oxígeno reactivo en Catharanthus roseus. B: Biointerfaces. 2008;62:105-111.

[11] Jones A. Effect of soil texture on critical bulk densities for root growth. Soil Sci. Soc. Am. J. 1983;47:1208–1211.

[12] Kang S, Zhang J. Controlled alternate partial root-zone irrigation: Its physiological consequences and impact on water use efficiency. Journal. Exp. 2004;55:2437- 2446.

[13] Onder S, Caliskan M, Onder D, Caliskan S. Different irrigation methods and water stress effects on potato yield and yield components. Agricultural Water Management. 2005;73:73–86.

[14] Santos T, Lopes C, Rodrigues M, De Souza C, Da-Silva J, Maroco J. Effects of deficit irrigation strategies on cluster microclimate for improving fruit composition of moscatel field-grown grapevines. Sci. hortic. 2007;112:321–330.

[15] Opena G, Porter G. Soil management and supplemental irrigation effects on potato: root growth. Journal Agronomy. 1999;91:426–431.

[16] Allen R, Pereira R, Raez D, Smith M. Estudio FAO Riego y Drenaje. Rome: FAO; 2006. Evapotranspiración de cultivo. Guías para la determinación de los requerimientos de agua de los cultivos.

[17] Cuesta X. INIAP – PNRT – papa. Vol 1. Quito: Planeta; 2008. Guía para el manejo y toma de datos de ensayos de mejoramiento de papa.

[18] Sermet, Caliskan, Caliska. Different irrigation methods and water stress effects on potato yield and yield components. Agricultural Water Management. 2005;73:73-86.

[19] Ahmadi S, Andersen M, Plauborg F, Poulsen R, Jensen C, Sepaskhah A. Effects of irrigation strategies and soils on field grown potatoes. Yield and water productivity. Agricultural Water Management. 2010;1:97– 109.

[20] Garay O. Uso consuntivo de agua de los cultivos. Journal Agronomy. 2009;2:9–15.

[21] Alva A, Moore A, Collins H. Impact of deficit irrigation on tuber yield and quality of potato cultivars. Crop Improvement Journal. 2012;26:211–227.

[22] Beltri E. Medida del balance hídrico y estimación del coeficiente Kc para la mejora de la programación de riegos. Técnicas de riego deficitario controlado. 2008.

[23] FAO. Estudio FAO Alimento y Agua. Vol 10. Roma: FAO; 2008. El cambio climático y la producción de alimentos.

[24] Simpfendofer. Efecto del riego en el cultivo de papa: riego y drenaje. INIA. 2000;34:35–38.

[25] Haverkort, A. Water management in potato production. Technical Information Bulletin, International Potato Center (CIP). 1982;15:22.

[26] Deblonde P, Ledent J. Effects of moderate drought conditions on green leaf number, stem height, leaf length and tuber yield of potato cultivars. Agronomy Journal. 2001;14:31–41.

[27] Bengough A, Mullins C. The resistance experienced by roots growing in a pressurised cell-a reappraisal. Plant Soil. 1990;123:73–82.

[28] Dechassa N, Schenk M, Claassen N, Steingrobe B. Phosphorus Efficiency of Cabbage (Brassica oleraceae L. var. capitata), Carrot (Daucus carota L.), and Potato (Solanum tuberosum L.). Plant and Soil. 2003;250:215-224.

[29] Dexter A. Soil physical quality. Part I. Theory, effects of soil texture, density, and organic matter and effects on root growth. Geoderma. 2004;120:201–214.

[30] Benjamin J, Nielsen D. Water deficit effects on root distribution of soybean, field pea and chickpea. Field Crops Res. 2006;97:248–253.

[31] Songsri, P., Jogloy, S., Vorasoot, N., Akkasaeng, C., Patanothai, A., Holbrook, C. Root distribution of drought-resistant peanut genotypes in response to drought. Journal of Agronomy and Crop Science. 2008;194:92–103.

[32] Joshi M, Fogelman E, Belausov E, Ginzberg, I. Potato root system development and factors that determine its architecture. Agricultural Research Organization. 2016;

[33] Stalham M, Allen E. Water uptake in the potato (solanum tuberosum) crop. Journal Agricultural. 2004;142:373–393.

[34] Vasconcelos A, Casagrande D, Perecin L, Jorge E, Landell. Evaluación del sistema radicular de la caña de azúcar por diferentes métodos. Journal Root. 2003;12:56 – 75.

[35] Zhang J, Davies W. Abscisic acid produced in dehydrating roots may enable the plant to measure water status of the soil. Plant, cell and environment. Journal Biotechnology. 1989;5:73–81.

[36] Muñoz F, Mylavarapu R, Hutchinson C, Portier K. Root Distribution under seepage-irrigated potatoes in northeast Florida. American Journal Potato. 2005;83:463–472.

[37] Ragassi C, Favarin J, Shiraishi F, Moita A, Henry S, De Melo P. Efeito da descompactacão profunda de solo na prod. Ao da cultura da batata. 2009;27:484–489.

[38] Coelho E, OR D. Root distribution and water uptake patterns of corn under surface and subsurface drip irrigation. Plant and Soil. 1999;206:123–136.

[39] Wang F, Kang Y, Liu S. (2006). Effects of drip irrigation frequency on soil wetting pattern and potato growth in North China Plain. Agricultural Water Management. 2006;79:248–264.

[40] Mingo D, Theobald J, Bacon M, Davies W, Dodd I. Biomass allocation in tomato (Lycopersicon esculentum) plants grown under partial rootzone drying: enhancement of root growth. Functional Plant Biology. 2004;31,971–978.

[41] Martin D, Stegman E, Fereres E. Management of Farm Irrigation Systems. Hoffman GJ, Howell TA, Solomon KH, editors. American Society of Agricultural Engineers; (1990). Irrigation scheduling principles.

[42] Sood M, Singh N. (2003). The potato: Production and utilization in sub-tropics. Journal Water Management.2003;32:121 – 128.

[43] Charkowski A. (2012). Cultivos de hortalizas. Plant Path. Consultado el 15 de febrero de 2018. Available from http://www.plantpath.wisc.edu. Wisconsin-Madison.

[44] Mackerron D, Jefferies R. The distributions of tuber sizes in droughte and irrigated crops of potato I. Observations on the effect of water stress graded yields from different cultivars. Potato Research. 1988;31:269–278.

[45] Jensen C, Jacobsen S, Andersen M et al. Leaf gas exchange and water relation characteristics of field quinoa (Chenopodium quinoa Willd.) during soil drying. European Journal Agronomy. 2000.

[46] Peña R. (2014). Evaluación de seis genotipos de papa con tolerancia al déficit hídrico Chimborazo Ecuador. VI Congreso Ecuatoriano de la Papa; 2014 Jul 8-12. Ibarra: Brown; 2015. p. 190 – 194.

Download
HTML
Cite
Share
statistics

241 Abstract Views

176 PDF Downloads