ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M.
ISSN: 2789-5009
Leading Ecuadorian research in science, technology, engineering, arts, and mathematics.
Chitin and Nanoquitin Preparation From Mushroom By-products Edible (Agaricus Bisporus) and River Crab (Procambarus Clarkii)
Published date: Aug 29 2021
Journal Title: ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M.
Issue title: Volume 1, Issue 3
Pages: 1081–1088
Authors:
Abstract:
Chitin production processes involve highly polluting treatments, current studies have shown the use of biological methods gave better results because it preserves chitin structure. In this work, chitin was obtained from Agaricus bisporus and Procambarus clarkii following friendly environmental alternative procedures, through a sequential process based on the use of proteases, glucanases. Transformation of microfibrils into nanofibers was accomplished dissolving amorphous regions followed by acid disruption. The chitin concentration determined as N-acetyl glucosamine is 83 ± 1.8% and 80 ± 2.4% for A. bisporus and P. clarkii, respectively, being a good-quality chitin, similar to the commercially available one. Finally, highly uniform, approximately 8 nanometer-wide chitin nanofibers were obtained, which still maintained their original chemical and crystalline structures. The product can be used for industrial applications in pharmacy, cosmetics, agriculture, and wastewater treatment.
Keywords: Byproduct of mushroom, Fraction of chitin, Agaricus bisporus, Procambarus clarkii.
Resumen
Los procesos de producción de quitina implican tratamientos altamente contaminantes, en estudios actuales se ha demostrado que la utilización de métodos biológicos dieron mejores resultados porque preserva la estructura de la quitina. En este trabajo se obtuvo quitina tanto de Agaricus bisporus como de Procambarus clarkii siguiendo procedimientos alternativos amigables con el medio ambiente, mediante un proceso secuencial basado en el uso de proteasas, glucanasas. La transformación de microfibrillas en nanofibras se logró disolviendo las regiones amorfas seguido de la ruptura ácida. La concentración de quitina determinada como N-acetil-glucosamina es de 83 ± 1,8% y 80 ± 2,4%, para A. bisporus y P. clarkii respectivamente, siendo una quitina de buena calidad, similar a la disponible comercialmente. Finalmente se obtuvo nanofibras de quitina altamente uniformes con un ancho de aproximadamente 8 nm que aún mantenían sus estructuras químicas y cristalinas originales. El producto puede ser utilizado para aplicaciones industriales en farmacia, cosmética, agricultura y tratamientos de aguas residuales.
Palabras Clave: Subproducto de champiñón, Fracción de Quitina, Agaricus bisporus, Nanoquitina, Procambarus clarkii.
References:
[1] Raabe D, Sachs C, Romano PJAM. The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material. Acta Materialia 2005;53(15):4281–4292.
[2] García Mendoza C, Sanchez E, Novaes-Ledieu M. Differences in microfibrils in the walls of Agaricus bisporus secondary mycelium. FEMS Microbiology Letters 1987;44:161–165.
[3] Ifuku S, Nomura R, Morimoto M, Saimoto H. Preparation of chitin nanofibers from mushrooms. Materials 2011;4(8):1417–1425.
[4] Muzzarelli RA, El Mehtedi M, Mattioli-Belmonte M. Emerging biomedical applications of nano-chitins and nano-chitosans obtained via advanced eco-friendly technologies from marine resources. Marine Drugs 2014;12(11):5468–5502.
[5] Urbina-Salazar A, Inca-Torres AR, Falcón-García G, et al. Chitinase production by Trichoderma harzianum grown on a chitin-rich mushroom byproduct formulated medium. Waste and Biomass Valorization 2018;10(10):2915–2923.
[6] Urbina-Salazar A. Producción de quitinasas a partir de subproductos de la industria alimentaria: Aplicación a los Hongos comestibles y Crustáceos [Tesis Doctoral]. Sevilla, España: Universidad de Sevilla; 2019.
[7] Lopes C, Antelo L, Franco-Uría A, Alonso A, Perez-Martín R. Chitin production from crustacean biomass: Sustainability assessment of chemical and enzymatic processes. Journal of Cleaner Production 2017;1– 12.
[8] Salaberria AM, Diaz RH, Labidi J, Fernandes SC. Role of chitin nanocrystals and nanofibers on physical, mechanical and functional properties in thermoplastic starch films. Food Hydrocolloids 2015;46:93– 102.
[9] Xia Y, Yang P, Sun Y, et al. One‐dimensional nanostructures: Synthesis, characterization, and applications. Advanced Materials 2003;15(5):353–389.
[10] Li D, Xia Y. Electrospinning of nanofibers: Reinventing the wheel? Advanced Materials 2004;16(14):1151– 1170.
[11] Lopez O, Garcia MA, Villar MA, Gentili A, Rodriguez MS, Albertengo L. Thermo-compression of biodegradable thermoplastic corn starch films containing chitin and chitosan. LWT-Food Science and Technology 2014;57(1):106–115.
[12] Gopalan Nair K, Dufresne A. Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. Processing and swelling behavior. Biomacromolecules 2003;4(3):657–665.
[13] Bautista J, Jover M, Gutierrez JF, et al. Preparation of crayfish chitin by in situ lactic acid production. Process Biochemistry 2001;37(3):229–234.
[14] Inca-Torres AR, Urbina-Salazar AR, Falcón-García G, et al. Hydrolytic enzymes production by Bacillus licheniformis growth on fermentation media formulated with sewage sludge. Journal of Biotech Research 2018;9:14–26.
[15] Carroad P, Tom R. Bioconversion of shellfish chitin wastes: Process. Conception and Selection of Microorganisms. Journal of Food Science 1978;43:1158–1161.
[16] Dubois M, Gilles KA, Hamilton JK, Rebers PT, Smith F. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 1956;28(3):350–356.
[17] AOAC. Official methods of analysis. 13th ed. Washington, DC: Association of Official Analytical Chemists; 1995.
[18] Michalenko GO, Hohl HR, Rast D. Chemistry and architecture of the mycelial wall of Agaricus bisporus. Microbiology 1976;92(2):251–262.
[19] Zivanovic S, Buescher R, Kim SK. Mushroom texture, cell wall composition, color, and ultrastructure as affected by pH and temperature. Journal of Food Science 2003;68(5):1860–1865.
[20] Ivshina TN, Artamonova SD, Ivshin VP, Sharnina FF. Isolation of the chitin-glucan complex from the fruiting bodies of mycothallus. Applied Biochemistry and Microbiology 2009;45(3):313–318.
[21] Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 2009;10(1):162–165.
[22] Khanafari A, Marandi Reza, Sanati S. Recovery of chitin and chitosan from shrimp waste by chemical and microbial methods. Iranian Journal of Environmental Health Science & Engineering 2008;5:19–24.
[23] Younes I, Rinaudo M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Marine Drugs 2015;13(3):1133–1174.
[24] Gortari MC, Hours RA. Biotechnological processes for chitin recovery out of crustacean waste: a minireview. Electronic Journal of Biotechnology 2013;16(3):14–14.
[25] Azuma K, Osaki T, Wakuda T, et al. Beneficial and preventive effect of chitin nanofibrils in a dextran sulfate sodium-induced acute ulcerative colitis model. Carbohydrate Polymers 2012;87(2):1399–1403.