ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M.

ISSN: 2789-5009

Leading Ecuadorian research in science, technology, engineering, arts, and mathematics.

Understanding Interactions Histological, Cytological, and Molecular Among the fungus P. Striiformis Tritici and Wheat

Published date: Aug 29 2021

Journal Title: ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M.

Issue title: Volume 1, Issue 2

Pages: 1007 - 1015

DOI: 10.18502/espoch.v1i2.9526

Authors:

Valeria Moreno Herediavaleria.morenoheredia@uqconnect.edu.auInvestigadora Independiente, Riobamba, Ecuador

Abstract:

Yellow rust is caused by the fungus Puccinia striiformis f.sp.tritici (Pst), which due to its great migratory capacity, adaptation to different environments, and high levels of mutation; is one of the most devastating wheat diseases worldwide. Due to this, several strategies have been implemented to control the disease, the best being genetic improvement. The key to develop resistant cultivars is understanding the interactions between wheat and Pst. Therefore, this work synthesizes the most important investigations carried out in the last 30 years regarding: cellular, histological, and molecular interactions between wheat and Pst. This will allow a deeper and more complete understanding of the interaction between resistance and virulence genes in the yellow rust disease. The results of this work revealed that the early stage of infection, in susceptible and resistant cultivars, is the same qualitatively, but not quantitatively. However, a clear difference at the histological and molecular level, in terms of the amount and type of genes expressed, begins 48 hours after infection. It was also found that the haustorium, in addition to absorbing nutrients from the host; can also manipulate its metabolism to benefit itself, and can make some nutrients on its own.

Keywords: haustorio, Puccinia striiformis f.sp.tritici, histological, resistance genes, virulence genes.

Resumen

La roya amarilla es causada por el hongo Puccinia striiformis f.sp.tritici (Pst), el cual debido a su gran capacidad migratoria, adaptación a diferentes ambientes, y niveles altos de mutación; es la enfermedad más devastadoras del trigo a nivel mundial. Debido a esto, varias estrategias han sido implementadas para controlar la enfermedad, siendo la mejor, el mejoramiento genético. La clave para desarrollar cultivares resistentes, es el entendimiento de las interacciones entre el trigo y Pst. Por lo tanto, este trabajo sintetiza las investigaciones más importantes realizadas en los últimos 30 años, en cuanto a interacciones celulares, histológicas y moleculares entre el trigo y Pst. Esto permitirá un entendimiento más profundo y completo de la interacción entre los genes de resistencia y virulencia, en la enfermedad de la roya. Los resultados revelaron que la fase temprana de infección en cultivares susceptibles y resistentes, es igual cualitativamente, pero no cuantitativamente. Sin embargo, una diferencia clara a nivel histológico y molecular, en cuanto a la cantidad y al tipo de genes expresados, empieza 48 hr post infección. También, se halló que el haustorio además de absorber nutrientes del huésped, también manipula el metabolismo de éste para su beneficio y puede elaborar algunos nutrientes por sí mismo.

Palabras Clave: haustorio, Puccinia striiformis f.sp.tritici, histológico, genes de resistencia, genes de virulencia.

References:

[1] Singer SD, Foroud NA, Laurie JD. Molecular improvement of grain: Target traits for a changing world. Encyclopedia of Food Security and Sustainability. 2019. Available from: https://www.sciencedirect.com/ topics/agricultural-and-biological- sciences/cereal-crop

[2] Abbate PE, Cardos MJ, Campaña LE. Manual de cultivo de trigo. 1st ed. Argentina: International Plant Nutrition Institute; 2017. Available from: https://www.researchgate.net/publication/320465244_ El_trigo_su_difusion_importancia_como_alimento_y_consumo

[3] FAO. Estados Unidos. FAO. 2020 June 2. Available from: http://www.fao.org/worldfoodsituation/csdb/ es/.

[4] CGIAR. Mexico. Wheat.org. 2017. Available from: https://wheat.org/wheatin-the-world/.

[5] Solh M, Nazari K, Tadesse W, Wellings CR. The growing threat of stripe rust worldwide. Presented at: Proceedings of the GBR1 2012 Technical Workshop; 2012 Sep 1-4; Beijing, China.

[6] Carmona M, Sautua F. Roya amarilla del trigo: Nuevas razas en el mundo, monitoreo y uso de fungicidas. Argentina: FAUBA; 2016. Available from: http://herbariofitopatologia.agro.uba.ar/wpcontent/uploads/ 2016/03/CARMONASAUTUA_Royaamarilla2017_FAUBA.pdf

[7] Buerstmayr M, Matiasch L, Mascher F et al. Mapping of quantitative adult plant field resistance to leaf rust and stripe rust in two European winter wheat populations reveals colocation of three QTL conferring resistance to both rust pathogens. Theoretical and Applied Genetics. 2014;127:2011-2028.

[8] Sharma-Poudyal D, Chen XM, Wang A et al. Virulence characterization of international collections of the wheat stripe rust pathogen, Puccinia striiformis f.sp. tritici. The American Phytopathological Society. 2013;97:379-386.

[9] Kang Z, Tang C, Zhao J. Wheat Puccinia striiformis Interactions. Chen X, Kang Z, editors. Stripe Rust Washington, USA: SpringerScience+Business Media B.V; 2017. p. 197-198.

[10] Flor HH. The complementary gene systems in flax and flax rust. Advances in Genetics. 1956;8:29–54.

[11] Wang X, Liu W, Chen X, et al. Differential gene expression in incompatible interaction between wheat and stripe rust fungus revealed by cDNA-AFLP and comparison to compatible interaction. BMC Plant Biol. 2010;10:9.

[12] Kang Z, Wang Y, Huang L. Histology and ultrastructure of incompatible combination between Puccinia striifromis and wheat cultivars with resistance of low reaction type. Sci Agric Sin. 2003;36:1026–31.

[13] Wang C, Huang L, Buchenauer H et al. Histochemical studies on the accumulation of reactive oxygen species (O2− and H2O2) in the incompatible and compatible interaction of wheat-Puccinia striiformis f. sp. tritici. Physiol Mol PlantPathol. 2007;71:230–9.

[14] Zhang H, Han Q, Wang C et al. Histology and ultrastructure of resistant mechanism of a new wheat material Yilipu to Puccinia striiformis. Acta Phys Sin. 2008;38:153–64.

[15] Zhang H, Wang C, Chen Y et al. Histological and cytological characterization of adult plant resistance to wheat stripe rust. Plant Cell Rep. 2012;31:2121–37.

[16] Moldenhauer B, Moerschbacher A, Van Der Westhuizen A. Histological investigation of stripe rust (Puccinia striiformis f.sp. tritici) development in resistant and susceptible wheat cultivars. Plant Pathology. 2006;55:469-474.

[17] Li H, Ren B, Kang ZS, Huang LL. Comparison of cell death and accumulation of reactive oxygen species in wheat lines with or without Yr36 responding to Puccinia striiformis f. sp. tritici under low and high temperatures at seedling and adult-plant stages. Protoplasma. 2016;253:787–802.

[18] Wang X, Tang Ch, Zhang G et al. cDNA-AFLP analysis reveals differential gene expression in compatible interaction of wheat challenged with Puccinia striiformis f. sp.tritici. BMC Genomics. 2009;10(289).

[19] Priyamvada A, Saharan MS, Tiwari R. Durable resistance in wheat. Journal of Genetics and Molecular Biology. 2011;3:108–114.

[20] Bozkurt O, Unver T, Akkaya MS. Genes associated with resistance to wheat yellow rust disease identified by differential display analysis. Physiol Mol Plant Pathol. 2008;71:251–9.

[21] Coram T, Wang M, Chen X. Transcriptome analysis of the wheat Puccinia striiformis f. sp. Tritici interaction. Mol Plant Pathol. 2008;9:157–169.

[22] Parlevliet JE. Resistance of the nonrace-specific type. Roelfs AP, Bushnell WR, editors. The cereal rusts: Diseases, distribution, epidemiology, and control. New York, USA: Academic Press;1985. p. 501–525.

[23] Hao Y, Wang T, Wang K et al. Transcriptome analysis provides insights into the mechanisms underlying wheat plant resistance to stripe rust at the adult plant stage. PLoS One, 2016;11.

[24] Chen X, Coram T, Huang X, Wang M, Dolezal A. Understanding Molecular mechanisms of durable and non-durable resitance to stripe rust in wheat using transcriptomics approach. Curr Genomics. 2013;14:111-126.

[25] Jiang J, Zhao J, Duan W et al. TaAMT2;3a, a wheat AMT2-type ammonium transporter, facilitates the infection of stripe rust fungus on wheat. BMC Plant Biology. 2019;19.

[26] Xu Q, Tang C, Wang X, et al. An effector protein of the wheat stripe rust fungus targets chloroplasts and suppresses chloroplast function. Nature Communications, 2019;1027.

[27] Garnica D, Upadhyaya N, Dodds P, Rathjen J. Strategies for wheat stripe rust pathogenicity identified by transcriptome sequencing. Plos One. 2013;8.

Download
HTML
Cite
Share
statistics

265 Abstract Views

209 PDF Downloads