ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M.

ISSN: 2789-5009

Leading Ecuadorian research in science, technology, engineering, arts, and mathematics.

Nanofluids, Synthesis and Stability - Brief Review

Published date: Aug 29 2021

Journal Title: ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M.

Issue title: Volume 1, Issue 2

Pages: 998–1006

DOI: 10.18502/espoch.v1i2.9520

Authors:

Jorge Silva-Yumijorge.silvay@espoch.edu.ecEscuela Superior Politécnica de Chimborazo, Facultad de Ciencias, Química, Riobamba, Ecuador

Telmo Moreno RomeroGrupo de Investigacion y Desarrollo Tecnologico de Energias Renovables.(GIDETER), Riobamba, Ecuador

Gabriela Chango LescanoGrupo de Investigacion y Desarrollo Tecnologico de Energias Renovables.(GIDETER), Riobamba, Ecuador

Abstract:

Nanofluids constitute an alternative for the most efficient use of energy as they allow generating or improving thermal properties among others of traditional fluids, they are defined as so-called base fluids, such as: water, ethylene glycol, oils, etc., which contain nanoparticles in suspension , such as: aluminum oxide, silicon oxide, titanium oxide, metal nanoparticles, carbon nanotubes, graphene, carbides, etc. Nanofluids can be synthesized by two methods, the nanoparticles can be obtained separately and then the nanofluid is prepared or both nanoparticles and the nanofluid can be prepared simultaneously, an important factor to consider in obtaining nanofluids is their stability. Stability can be achieved by physical treatment or chemical treatment using surfactants. There are many studies about nanofluids, however, most are obtained with synthetic nanoparticles, leaving the use of natural nanoparticles as a field to be explored, as well as other surfactants to improve their stability.

Keywords: nanofluids, hybrid nanofluids, nanoparticles, nano refrigerant.

Resumen

Los nanofluidos constituyen una alternativa para el uso más eficiente de energía pues permiten generar o mejorar las propiedades térmicas entre otras de los fluidos tradicionales, son definidos como fluidos denominados base, como: agua, etilenglicol, aceites, etc., que contienen nanopartículas en suspensión, como: óxido de aluminio, óxido de silicio, óxido de titanio, nanopartículas metálicas, nanotubos de carbono, grafeno, carburos, etc. Los nanofluidos se pueden sintetizar por dos métodos, se pueden obtener las nanopartículas por separado y luego preparar el nanofluido o se puede preparar simultáneamente las nanopartículas y el nanofluido, un factor importante a considerar en la obtención de nanofluidos es su estabilidad. La estabilidad se puede lograr mediante tratamiento físico o tratamiento químico mediante la utilización de surfactantes. Existen muchos estudios acerca de nanofluidos sin embargo, la mayoría se obtienen con nanopartículas sintéticas, quedando el uso de nanopartículas naturales como un campo por explorar al igual que otros surfactantes para mejorar su estabilidad.

Palabras Clave: nanofluidos, nonofluidos híbridos, nanoparticulas, nanorefrigerantes.

References:

[1] Azmi WH, Sharif MZ, Yusof TM, Mamat R, Redhwan AAM. Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system – A review. Renew Sustain Energy Rev [Internet]. 2017;69(October 2016)
:415–28. dx.doi.org/10.1016/j.rser.2016.11.207

[2] Chakraborty S, Panigrahi PK. Stability of nanofluid: A review. Appl Therm Eng. 2020;174(March).

[3] Abbas F, Raza T, Babar H, Mansoor M, Sajjad U, Amer M. Nano fluid: Potential evaluation in automotive radiator. J ofMolecular Liq. 2020;297.

[4] Sanukrishna SS, Jose PM. Thermal and rheological characteristics of refrigerant compressor oil with alumina nanoparticles—An experimental investigation. Powder Technol [Internet]. 2018;339:119–29. https://doi.org/
10.1016/j.powtec.2018.08.003

[5] Sanukrishna S, Murukan M, Jose PM. An overview of experimental studies on nanorefrigerants: Recent research, development and applications. Int J Refrig. 2018;88:552–77.

[6] Che SNA, Mahmud JM, Aziz Japar WMA, Muhammad AI. A review on preparation methods, stability and applications of hybrid nanofluids. Renew Sustain Energy Rev [Internet]. 2017;80(August):1112–22. http://dx.doi.org/10.1016/j.rser.2017.05.221

[7] Li D, Fang W, Feng Y, Geng Q, Song M. Stability properties of water-based gold and silver nanofluids stabilized by cationic gemini surfactants. J Taiwan Inst Chem Eng. 2019;97:458–65.

[8] Eltaweel M, Abdel-Rehim AA. Energy and exergy analysis of a thermosiphon and forced- circulation flatplate solar collector using MWCNT/Water nano fluid. Case Stud Therm Eng. 2019;14(February):100416.

[9] Paul G, Shit S, Hirani H, Kuila T, Murmu NC. Tribological behavior of dodecylamine functionalized graphene nanosheets dispersed engine oil nanolubricants. Tribol Int [Internet]. 2019;131:605–19. https: //doi.org/10.1016
/j.triboint.2018.11.012

[10] Xu X, Xu C, Liu J, Fang X, Zhang Z. A direct absorption solar collector based on a water-ethylene glycol based nanofluid with anti-freeze property and excellent dispersion stability. Renew Energy. 2019;133:760–9.

[11] El-salamony RA, Morsi RE. Stable gallium oxide@ silica/polyvinyl pyrrolidone hybrid nanofluids: Preparation, characterization, and photo-activity toward removal of malachite green dye. J Mol Liq. 2018;271(1):589–98.

[12] Kumar M, Sawhney N, Sharma AK, Sharma M. Thermo-physical profile of zinc oxide nanoparticles dispersed in aqueous solution of propylene glycol. J Mol Liq [Internet]. 2018;249:650–8. http://dx.doi. org/10.1016/j.
molliq.2017.11.095

[13] Said Z, Saidur R. Thermophysical properties of metal oxides nanofluids. Nanofluids Thermophys Prop Met Oxides Nanofluids. 2017;

[14] Liu Z, Yan Y, Fu R, Alsaady M. Enhancement of solar energy collection with magnetic nano fluids. Therm Sci Eng Prog. 2018;8(March):130–5.

[15] Al-Waeli AHA, Chaichan MT, Kazem HA, Sopian K. Evaluation and analysis of nanofluid and surfactant impact on photovoltaic-thermal systems. Case Stud Therm Eng. 2019;13(November 2018):100392.

[16] Al-Waeli AHA, Chaichan MT, Sopian K, Kazem HA. Influence of the base fluid on the thermo-physical properties of PV/T nanofluids with surfactant. Case Stud Therm Eng [Internet]. 2019;13. https://doi.org/ 10.1016/j.csite.2018.10.001

[17] Ganvir RB, Walke P V, Kriplani VM. Heat transfer characteristics in nanofluid — A review. Renew Sustain Energy Rev. 2017;75(November 2016):451–60.

[18] Taw MM. Experimental studies of nanofluid thermal conductivity enhancement and applications: A review. Renew Sustain Energy Rev. 2017;75(November 2016):1239–53.

[19] Chakraborty S, Sengupta I, Sarkar I, Pal SK, Chakraborty S. Effect of surfactant on thermo-physical properties and spray cooling heat transfer performance of Cu-Zn-Al LDH nanofluid. Appl Clay Sci. 2019;168( June 2018):43–55.

[20] Ranga BJA, Kumar KK, Srinivasa RS. State-of-art review on hybrid nanofluids. Renew Sustain Energy Rev. 2017;77(April):551–65.

[21] Sun B, Zhang Y, Yang D, Li H. Experimental study on heat transfer characteristics of hybrid nano fluid impinging jets. Appl Therm Eng. 2019;151( July 2018):556–66.

[22] Huminic G, Huminic A. Hybrid nanofluids for heat transfer applications – A state-of-the-art review. Int J Heat Mass Transf [Internet]. 2018;125:82–103. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.059

[23] Sundar LS, Sharma K V., Singh MK, Sousa ACM. Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor – A review. Renew Sustain Energy Rev [Internet]. 2017;68(August 2016):185– 98. http://dx.doi.org/10.1016/j.rser.2016.09.108

[24] Leong KY, Ahmad KZK, Chyuan H, Ghazali MJ, Baharum A. Synthesis and thermal conductivity characteristic of hybrid nano fluids – A review. Renew Sustain Energy Rev. 2017;75(May 2015):868–78.

[25] Dhinesh KD, Valan AA. A comprehensive review of preparation, characterization, properties and stability of hybrid nanofluids. Renew Sustain Energy Rev [Internet]. 2018;81(August 2016):1669–89. https://doi. org/10.1016/j.rser.2017.05.257

[26] Babar H. Towards hybrid nano fluids: Preparation, thermophysical properties, applications, and challenges. J ofMolecular Liq. 2019;281:598–633.

[27] Suganthi K, Rajan K. Metal oxide nano fluids: Review of formulation, thermo-physical properties, mechanisms, and heat transfer performance. Renew Sustain Energy Rev. 2017;76(February):226–55.

[28] Saghir MZ, Ahadi A, Mohamad A, Srinivasan S. Water aluminum oxide nanofluid benchmark model. Int J Therm Sci. 2016;109:148–58.

[29] Ho CJ, Liao J, Li C, Yan W, Amani M. Experimental study of cooling characteristics of water-based alumina nano fluid in a minichannel heat sink. Case Stud Therm Eng. 2019;14(February):1–9.

[30] Sunil J, Vignesh J, Vettumperumal R, Maheswaran R, Raja RAA. The thermal properties of CaONanofluids. Vacuum. 2019;161(December 2018):383–8.

[31] Goharkhah M, Ashjaee M, Shahabadi M. Experimental investigation on convective heat transfer and hydrodynamic characteristics of magnetite nano fluid under the influence of an alternating magnetic field. 2016;99:113–24.

[32] Agnihotri P, Lad VN. Magnetic nanofluid: synthesis and characterization. Chem Pap [Internet]. 2020;74(9):
3089–100. https://doi.org/10.1007/s11696-020-01138-w

[33] Khan MS, Abid M, Ali HM, Amber KP, Bashir MA, Javed S. Comparative performance assessment of solar dish assisted s-CO2 Brayton cycle using nanofluids. Appl Therm Eng [Internet]. 2019;148:295–306. https://doi.org/
10.1016/j.applthermaleng.2018.11.021

[34] Sanukrishna SS, Shafi M, Murukan M, Jose PM. Effect of SiO2 nanoparticles on the heat transfer characteristics of refrigerant and tribological behaviour of lubricant. Powder Technol. 2019;356:39–49.

[35] Che SNA, Witri MNA, Mamat R. Recent advancement of nanofluids in engine cooling system. Renew Sustain Energy Rev. 2017;75(April 2015):137–44.

[36] Parametthanuwat T, Bhuwakietkumjohn N, Rittidech S, Ding Y. Experimental investigation on thermal properties of silver nanofluids. 2015;56:80–90.

[37] Mashali F, Languri EM, Davidson J et al. Thermo-physical properties of diamond nanofluids: A review. Int J Heat Mass Transf [Internet]. 2019;129:1123–35. https://doi.org/10.1016/j.ijheatmasstransfer.

[38] Yarmand H, Gharehkhani S, Shirazi SFS et al. Nanofluid based on activated hybrid of biomass carbon/graphene oxide: Synthesis, thermo-physical and electrical properties. Int Commun Heat Mass Transf [Internet]. 2016;72:10–5. http://dx.doi.org/10.1016/j.icheatmasstransfer.2016.01.004

[39] Yang S, Cui X, Zhou Y, Chen C. Study on the effect of graphene nanosheets refrigerant oil on domestic refrigerator performance. Int J Refrig [Internet]. 2020;110:187–95. https://doi.org/10.1016/j.ijrefrig.2019. 11.008

[40] Zhou Y, Wu X, Zhong X, Zhang S, Pu H, Zhao JX. Development of silicon quantum dots based nano-fluid for enhanced oil recovery in tight Bakken cores. Fuel. 2020;277(April).

[41] Sezer N, Atieh MA, Koç M. A comprehensive review on synthesis, stability, thermophysical properties, and characterization of nanofluids. Powder Technol [Internet]. 2019;344:404–31. https://doi.org/10.1016/ j.powtec.2018.12.016

[42] Kim S, Tserengombo B, Choi S, Noh J, Huh S. Experimental investigation of dispersion characteristics and thermal conductivity of various surfactants on carbon based nanomaterial. Int Commun Heat Mass Transf. 2018;91(December 2017):95–102.

[43] Gao T, Li C, Zhang Y et al. Dispersing mechanism and tribological performance of vegetable oil-based CNT nanofluids with different surfactants. Tribiology Int. 2019;131(August 2018):51–63.

Download
HTML
Cite
Share
statistics

604 Abstract Views

703 PDF Downloads