ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M.
ISSN: 2789-5009
Leading Ecuadorian research in science, technology, engineering, arts, and mathematics.
Development of Antibacterial Gels Based on Sodium Alginate and Inclusion Complexes for Packaging Applications in Fruits and Vegetables
Published date: Sep 25 2024
Journal Title: ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M.
Issue title: Volume 3, Issue 4
Pages: 189–206
Authors:
Abstract:
Bacterial growth in fruits and vegetables causes a large percentage of the loss and waste of these foods worldwide. For this reason, the objective of this study was to develop antibacterial gels based on sodium alginate, β-cyclodextrin, and allyl isothiocyanate inclusion complexes (β-CD:AITC) for the potential packaging of fresh fruits and vegetables. The β-CD:AITC complexes were prepared by the co-precipitation method with a 1:1 molar ratio, and was further verified by FESEM microscopy. On the other hand, the antibacterial gels were prepared using the external gelation method, and the effect of the order of incorporation of the components, the conditions of the components, and the resting conditions of the dispersions on their visual appearance was evaluated. Furthermore, the antibacterial activity of the gels against Escherichia coli and Listeria innocua was evaluated using a headspace system. FESEM micrographs showed a crystalline block-like morphology in the inclusion complexes. The order of incorporation (1) glucone-delta-lactone (2) complexes (3) alginate allowed for obtaining more homogeneous gels with a smooth surface. The presence of glucono-delta-lactone, the concentration of 0.05 M CaCl2, a cross-linking time of 20 hr, and the cooling of the dispersion allowed more uniform gels to be obtained. Finally, better antibacterial activity against E. coli was obtained with the gels loaded with 10% β-CD:AITC complexes. According to these results, the developed materials could be used as antimicrobial packaging materials for fresh fruits and vegetables.
Keywords: β-cyclodextrin, allyl isothiocyanate, alginate, food packaging, antimicrobial.
Resumen
El crecimiento bacteriano en frutas y verduras provoca un gran porcentaje de pérdida y desperdicio de estos alimentos a nivel mundial. Por esta razón, el objetivo de este estudio fue desarrollar geles antibacterianos a base de alginato de sodio y complejos de inclusión de β-ciclodextrina e isotiocianato de alilo (β-CD:AITC) para el potencial envasado de frutas y verduras frescas. Los complejos β-CD:AITC se prepararon mediante el método de co-precipitación con una relación molar 1:1, y su obtención se verificó mediante microscopía FESEM. Por otro lado, los geles antibacterianos se prepararon mediante el método de gelificación externa, y se evaluó el efecto del orden de incorporación de los componentes, las condiciones de los componentes y de reposo de las dispersiones en su apariencia visual. Además, se evaluó la actividad antibacteriana de los geles frente a Escherichia coli y Listeria innocua mediante un sistema de espacio de cabeza. Las micrografías FESEM mostraron una morfología del tipo bloque cristalino en los complejos de inclusión. El orden de incorporación (1)Glucono-deltalactona-( 2)Complejos-(3)Alginato permitió obtener geles más homogéneos y con una superficie lisa. La presencia de la Glucono-delta-lactona, la concentración de 0,05 M de CaCl2, un tiempo de entrecruzamiento de 20 horas y la refrigeración de la dispersión permitió obtener geles más uniformes. Finalmente, se obtuvo una mejor actividad antibacteriana frente a E. coli con los geles cargados con un 10% de complejos β-CD:AITC. De acuerdo con estos resultados, los materiales desarrollados podrían ser utilizados como materiales de envase antimicrobiano para frutas y verduras frescas.
Palabras Clave: β-ciclodextrina, isotiocianato de alilo, alginato, envases de alimentos, antimicrobiano.
References:
[1] FAO F and AO of the UN. Pérdidas y desperdicios de alimentos en América Latina y el Caribe. Boletín 3. 2016 Feb.
[2] FAO F and AO of the UN. Mitigación de riesgos en los sistemas alimentarios durante COVID-19: Reducción de la pérdida y el desperdicio de alimentos. Mitigación de riesgos en los sistemas alimentarios durante COVID-19: Reducción de la pérdida y el desperdicio de alimentos. Rome: FAO; 2021 Apr.
[3] Porat R, Lichter A, Terry LA, Harker R, Buzby J. Postharvest losses of fruit and vegetables during retail and in consumers’ homes: Quantifications, causes, and means of prevention. Postharvest Biol Technol. 2018 May;139:135–149.
[4] FAO F and AO of the UN. El estado mundial de la agricultura y la alimentación. Progresos en la lucha contra la pérdida y el desperdicio de alimentos. Rome; 2019.
[5] Joardder MUH, Mourshed M, Hasan Masud M. Water in foods. In: State of bound water: Measurement and significance in food processing. Cham: Springer International Publishing; 2019. p. 7–27.
[6] Lucera A, Conte A, Del Nobile MA. Volatile compounds usage in active packaging systems. Antimicrob Food Packag. 2016 Jan;319–327.
[7] Zhong Y, Godwin P, Jin Y, Xiao H. Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review. Adv Ind Eng Polym Res. 2020 Jan;3(1):27–35.
[8] Han JW, Ruiz-Garcia L, Qian JP, Yang XT. Food packaging: A comprehensive review and future trends. Compr Rev Food Sci Food Saf [Internet]. 2018 Jul 1 [cited 2020 Aug 5];17(4):860–877. Available from: http://doi.wiley.com/10.1111/1541-4337.12343
[9] Becerril R, Nerín C, Silva F. Encapsulation systems for antimicrobial food packaging components: An update. Molecules [Internet]. 2020 Mar 3 [cited 2023 Mar 10];25(5):1134. Available from: https://www.mdpi.com/1420-3049/25/5/1134/htm
[10] Freche E, Gieng J, Pignotti G, Ibrahim SA, Feng X. Applications of lemon or cinnamon essential oils in strawberry fruit preservation: A review. J Food Process Preserv. 2022;46(9):16526.
[11] Wińska K, Mączka W, Łyczko J, Grabarczyk M, Czubaszek A, Szumny A. Essential oils as antimicrobial agents—myth or real alternative? Molecules. 2019 Jun;24(11):2130.
[12] Taghavi T, Kim C, Rahemi A. Role of natural volatiles and essential oils in extending shelf life and controlling postharvest microorganisms of small fruits. Microorganisms. 2018 Oct;6(4):104.
[13] Reyes-Jurado F, Cervantes-Rincón T, Bach H, López-Malo A, Palou E. Antimicrobial activity of Mexican oregano (Lippia berlandieri), thyme (Thymus vulgaris), and mustard (Brassica nigra) essential oils in gaseous phase. Ind Crops Prod. 2019 May;131:90–95.
[14] Plata-Rueda A, Campos JM, da Silva Rolim G, Martínez LC, Dos Santos MH, Fernandes FL, et al. Terpenoid constituents of cinnamon and clove essential oils cause toxic effects and behavior repellency response on granary weevil, Sitophilus granarius. Ecotoxicol Environ Saf. 2018 Jul;156:263–270.
[15] Amiri A, Mottaghipisheh J, Jamshidi-Kia F, Saeidi K, Vitalini S, Iriti M. Antimicorbial potency of major functional foods’ essential oils in liquid and vapor phases: A short review. Appl Sci. 2020 Nov;10(22):8103.
[16] Romeo L, Iori R, Rollin P, Bramanti P, Mazzon E. Isothiocyanates: An overview of their antimicrobial activity against human infections. Molecules. 2018 Mar;23(3):624.
[17] Huang T, Qian Y, Wei J, Zhou C, Huang T, Qian Y, et al. Polymeric antimicrobial food packaging and its applications. Polymers (Basel). 2019 Mar;11(3):560.
[18] Otoni CG, Espitia PJP, Avena-Bustillos RJ, McHugh TH. Trends in antimicrobial food packaging systems: Emitting sachets and absorbent pads. Food Res Int. 2016;83:60–73.
[19] Mari M, Bautista-Baños S, Sivakumar D. Decay control in the postharvest system: Role of microbial and plant volatile organic compounds. Postharvest Biol Technol. 2016 Dec;122:70–81.
[20] Lafarga T, Colás-Medà P, Abadías M, Aguiló-Aguayo I, Bobo G, Viñas I. Strategies to reduce microbial risk and improve quality of fresh and processed strawberries: A review. Innov Food Sci Emerg Technol. 2019 Mar;52:197–212.
[21] Shin J, Kathuria A, Lee YS. Effect of hydrophilic and hydrophobic cyclodextrins on the release of encapsulated allyl isothiocyanate (AITC) and their potential application for plastic film extrusion. J Appl Polym Sci. 2019 Nov;136(42):48137.
[22] Jansook P, Ogawa N, Loftsson T. Cyclodextrins: Structure, physicochemical properties and pharmaceutical applications. Int J Pharm. 2018 Jan;535(1–2):272– 284.
[23] Crini G, Fourmentin S, Fenyvesi É, Torri G, Fourmentin M, Morin-Crini N. Cyclodextrins, from molecules to applications. Environ Chem Lett. 2018 Dec;16(4):1361–1375.
[24] Saifull M, Islam Shishir MR, Ferdowsi R, Tanver Rahman MR, Van Vuong Q. Micro and nano encapsulation, retention and controlled release of flavor and aroma compounds: A critical review. Trends Food Sci Technol. 2019 Apr;86:230–251.
[25] Tanwar S, Barbey C, Dupont N. Experimental and theoretical studies of the inclusion complex of different linear aliphatic alcohols with cyclodextrins. Carbohydr Polym. 2019 Aug;217:26–34.
[26] Kfoury M, Auezova L, Greige-Gergesa H, Fourmentin S. Promising applications of cyclodextrins in food: Improvement of essential oils retention, controlled release and antiradical activity. Carbohydr Polym. 2015 Oct;131:264–272.
[27] Vilela C, Kurek M, Hayouka Z, Röcker B, Yildirim S, Antunes MDC, et al. A concise guide to active agents for active food packaging. Trends Food Sci Technol [Internet]. 2018 Oct 1 [cited 2020 Aug 6];80:212–22. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0924224418302760
[28] Parreidt TS, Müller K, Schmid M. Alginate-based edible films and coatings for food packaging applications. Foods. 2018 Oct;7(10):170.
[29] Puscaselu R, Gutt G, Amariei S. The use of edible films based on sodium alginate in meat product packaging: An eco-friendly alternative to conventional plastic materials. Coatings. 2020 Feb;10(2):166.
[30] Ahmad Raus R, Wan Nawawi WMF, Nasaruddin RR. Alginate and alginate composites for biomedical applications. Asian J Pharm Sci. 2021 May;16(3):280–306.
[31] Mancini F, Mchugh TH. Fruit-alginate interactions in novel restructured products. Food/Nahrung. 2000;44(3):152–157.
[32] Muñoz-Shugulí C, Rodríguez-Mercado F, Mascayano C, Herrera A, Bruna JE, Guarda A, et al. Development of inclusion complexes with relative humidity responsive capacity as novel antifungal agents for active food packaging. Front Nutr. 2022 Jan 4;8:1091.
[33] Li J, Wu Y, He J, Huang Y. A new insight to the effect of calcium concentration on gelation process and physical properties of alginate films. J Mater Sci [Internet]. 2016 Jun 1 [cited 2023 May 9];51(12):5791–801. Available from: https://link.springer.com/article/10.1007/s10853-016-9880-0
[34] Blandino A, Macías M, Cantero D. Formation of calcium alginate gel capsules: Influence of sodium alginate and CaCl2 concentration on gelation kinetics. J Biosci Bioeng. 1999 Jan 1;88(6):686–9.
[35] Rhim JW. Physical and mechanical properties of water resistant sodium alginate films. LWT - Food Sci Technol. 2004 May 1;37(3):323–330.
[36] Ching SH, Bansal N, Bhandari B. Alginate gel particles–A review of production techniques and physical properties. Crit Rev Food Sci Nutr [Internet]. 2017 Apr 13 [cited 2023 May 9];57(6):1133–1152. Available from: https://www.tandfonline.com/doi/abs/10.1080/10408398.2014.965773
[37] Yao Z, Cao Q, Li C, Gong W, Meng X. Improvement of β-cyclodextrin/cardanol inclusion complex for the thermal-oxidative stability and environmental-response antioxidation releasing property of polylactic acid. Polym Adv Technol [Internet]. 2022 Feb 1 [cited 2023 May 11];33(2):492–504. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/pat.5531
[38] Gao S, Liu Y, Jiang J, Ji Q, Fu Y, Zhao L, et al. Physicochemical properties and fungicidal activity of inclusion complexes of fungicide chlorothalonil with β- cyclodextrin and hydroxypropyl-β-cyclodextrin. J Mol Liq. 2019;293(1):111513.
[39] Hadian Z, Maleki M, Abdi K, Atyabi F, Mohammadi A, Khaksar R. Preparation and characterization of nanoparticle β-Cyclodextrin: Geraniol inclusion complexes. Iran J Pharm Res IJPR [Internet]. 2018 Dec 1 [cited 2023 May 11];17(1):39. Available from: /pmc/articles/PMC5937076/
[40] Yang W, Yang L, Li F, Zhao Y, Liao X, Gao C, et al. pH-sensitive β-cyclodextrin derivatives for the controlled release of Podophyllotoxin. J Mol Struct. 2021 Mar 15;1228:129744.
[41] Maleki M, Mortazavi SA, Yeganehzad S, Pedram Nia A. Study on liquid core barberry (Berberis vulgaris) hydrogel beads based on calcium alginate: Effect of storage on physical and chemical characterizations. J Food Process Preserv [Internet]. 2020 May 1 [cited 2023 May 9];44(5):e14426. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/jfpp.14426
[42] Lee KY, Mooney DJ. Alginate: Properties and biomedical applications. Prog Polym Sci. 2012 Jan 1;37(1):106–126.
[43] López de Dicastillo C, Patiño C, Galotto MJM, Palma JLJ, Alburquenque D, Escrig J. Novel antimicrobial titanium dioxide nanotubes obtained through a combination of atomic layer deposition and electrospinning technologies. Nanomaterials. 2018 Feb 24;8(2):128.
[44] Erkan A, Bakir U, Karakas G. Photocatalytic microbial inactivation over Pd doped SnO2 and TiO2 thin films. J Photochem Photobiol A Chem. 2006 Dec;184(3):313– 321.
[45] Lu Z, Dockery CR, Crosby M, Chavarria K, Patterson B, Giedd M. Antibacterial activities of wasabi against Escherichia coli O157: H7 and Staphylococcus aureus. Front Microbiol. 2016 Sep 21;7(SEP):1403.
[46] Lin CM, Preston JF, Wei CI. Antibacterial mechanism of allyl isothiocyanate. J Food Prot. 2000 Jun 1;63(6):727–734.