ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M.
ISSN: 2789-5009
Leading Ecuadorian research in science, technology, engineering, arts, and mathematics.
Effect of Heat Treatment on the Antioxidant Capacity of Fruits and Vegetables - A Review Study
Published date: Sep 25 2024
Journal Title: ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M.
Issue title: Volume 3, Issue 4
Pages: 87–102
Authors:
Abstract:
Fruits and vegetables are a fundamental part of people’s diets due to their composition of bioactive phytochemical compounds. These act as antioxidants that neutralize free radicals, which are related to various pathologies causing negative effects on the health of the host. Raw materials subjected to heat treatments at different temperatures allow the production of safe and stable foods. However, through a systematic review, the present research focused on determining whether heat treatments exert variations in the antioxidant capacity of fruits and vegetables. The methodology applied in the collected research studies was used to calculate the total antioxidant capacity. It was observed that FRAP, ABTS, ORAC, and DPPH assays were used. Furthermore, the total phenolic content, which is also related to the antioxidant capacity, was calculated and analyzed using the Folin-Ciocalteu method. The results found by several other authors indicate that the majority refers to the thermal treatment that plays a positive role by increasing the antioxidant capacity of fruits and vegetables. This is due to cell breakdown caused by high temperatures. On the other hand, some results of the authors differed from the above, where, they showed that raw materials, when applied to thermal treatments, reduce the antioxidant capacity due to the inactivation effects of oxidative enzymes.
Keywords: fruits, vegetables, trials, antioxidants, total phenols, heat treatment.
Resumen
Las frutas y hortalizas son una parte fundamental en la dieta de las personas, debido a que presentan en su composición compuestos bioactivos fitoquímicos, mismos que actúan como antioxidantes favoreciendo a neutralizar los radicales libres, que se relacionan con diversas patologías ocasionando efectos negativos en la salud del huésped. Las materias primas sometidas a tratamientos térmicos con diferentes temperaturas, permiten la producción de alimentos seguros y estables. Sin embargo, en la presente investigación mediante una revisión sistemática, se fundamentó en determinar si los tratamientos térmicos ejercen variaciones en la capacidad antioxidante de frutas y hortalizas. La metodología aplicada en la recopilada de diferentes investigaciones sirvió para calcular la capacidad antioxidante total, se observó que utilizan ensayos FRAP, ABTS, ORAC, DPPH y para calcular el contenido de fenoles totales que también se relaciona con la capacidad antioxidante lo analizan mediante el método más conocido que es el de Folin-Ciocalteu. Los resultados encontrados por los diferentes autores se pueden conocer que la mayoría refiere a que el tratamiento térmico desempeña acciones positivas al incrementar la capacidad antioxidante de las frutas y hortalizas, esto se debe al rompimiento celular que ocasionan las elevadas temperaturas. Por otro lado, se encontró investigaciones donde autores difieren con lo anterior, siendo así que en sus exploraciones demuestran que las materias primas al ser aplicadas a tratamientos térmicos la capacidad antioxidante se ve reducida por efectos de inactivación de enzimas oxidativas.
Palabras Clave: frutas, hortalizas, ensayos, antioxidantes, fenoles totales, tratamiento térmico.
References:
[1] Abuajah CI, Ogbonna AC, Osuji CM. Functional components and medicinal properties of food: A review. J Food Sci Technol. 2015 May;52(5):2522–2529.
[2] Navajas-Porras B, Pérez-Burillo S, Valverde-Moya ÁJ, Hinojosa-Nogueira D, Pastoriza S, Rufián-Henares JÁ. Effect of cooking methods on the antioxidant capacity of plant foods submitted to in vitro digestion-fermentation. Antioxidants. 2020 Dec;9(12):1312.
[3] Srividya AR, Venkatesh N, Vishnuvarthan VJ. Nutraceutical as medicine. Int J Adv Pharm Sci 2010:1(2):132–145. www.pharmanest.in
[4] Kazimierczak R, Gorka K, Hallmann E, Średnicka-Tober D, Lempkowska-Gocman M, Rembiałkowska E. The comparison of the bioactive compounds content in selected leafy vegetables coming from organic and conventional production. Res Appl Agri Eng. 2016;61:218–223.
[5] Wang Y, Lin J, Tian J, Si X, Jiao X, Zhang W, et al. Blueberry Malvidin-3-galactoside suppresses hepatocellular carcinoma by regulating apoptosis, proliferation, and metastasis pathways in vivo and in vitro. J Agric Food Chem. 2019 Jan;67(2):625– 636.
[6] Di Lorenzo C, Colombo F, Biella S, Stockley C, Restani P. Polyphenols and human health: The role of bioavailability. Nutrients. 2021 Jan;13(1):273.
[7] Pérez-Lamela C, Franco I, Falqué E. Impact of high-pressure processing on antioxidant activity during storage of fruits and fruit products: A review. Molecules. 2021 Aug;26(17):5265.
[8] Del Bo’ C, Bernardi S, Marino M, Porrini M, Tucci M, Guglielmetti S, et al. Systematic review on polyphenol intake and health outcomes: Is there sufficient evidence to define a health-promoting polyphenol-rich dietary pattern? Nutrients. 2019 Jun;11(6):1355.
[9] Huang D, Ou B, Prior RL. The chemistry behind antioxidant capacity assays. J Agric Food Chem. 2005 Mar;53(6):1841–1856.
[10] Prior RL, Wu X, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem. 2005 May;53(10):4290–302.
[11] Pérez Burillo S. Evaluación de la actividad antioxidante global de los componentes de la dieta espa nola mediante su digestión in vitro: efecto del procesado térmico y de la microbiota intestinal. 2019. http://hdl.handle.net/10481/56537
[12] Miglio C, Chiavaro E, Visconti A, Fogliano V, Pellegrini N. Effects of different cooking methods on nutritional and physicochemical characteristics of selected vegetables. J Agric Food Chem. 2008 Jan;56(1):139–147.
[13] Ramírez-Anaya JP, Samaniego-Sánchez C, Casta neda-Saucedo MC, Villalón-Mir M, de la Serrana HL. Phenols and the antioxidant capacity of Mediterranean vegetables prepared with extra virgin olive oil using different domestic cooking techniques. Food Chem. 2015 Dec;188:430–438.
[14] Rufián-Henares JÁ, Guerra-Hernandez E, García-Villanova B. Colour measurement as indicator for controlling the manufacture and storage of enteral formulas. Food Control. 2006;17(6):489–493.
[15] Rufían-Henares JA, de la Cueva SP. Assessment of hydroxymethylfurfural intake in the Spanish diet. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2008 Nov;25(11):1306–1312.
[16] Xu G, Ye X, Chen J, Liu D. Effect of heat treatment on the phenolic compounds and antioxidant capacity of citrus peel extract. J Agric Food Chem. 2007 Jan;55(2):330– 335.
[17] Wang Y, Luo Z, Du R, Liu Y, Ying T, Mao L. Effect of nitric oxide on antioxidative response and proline metabolism in banana during cold storage. J Agric Food Chem. 2013 Sep;61(37):8880–8887.
[18] Camacho MD, Martínez-Lahuerta JJ, Ustero I, García-Martínez E, Martínez-Navarrete N. Composition of powdered freeze-dried orange juice co-product as related to glucose absorption in vitro. Foods. 2023 Mar;12(6):1127.
[19] Kim DO, Padilla-Zakour OI. Jam processing effect on phenolics and antioxidant capacity in anthocyanin-rich fruits: Cherry, plum, and raspberry. J Food Sci. 2006;69(9):S395–S400.
[20] Maghsoudlou Y, Asghari Ghajari M, Tavasoli S. Effects of heat treatment on the phenolic compounds and antioxidant capacity of quince fruit and its tisane’s sensory properties. J Food Sci Technol. 2019 May;56(5):2365–2372.
[21] Gheisari HR, Abhari KH. Drying method effects on the antioxidant activity of quince (Cydonia oblonga Miller) tea. Acta Sci Pol Technol Aliment. 2014;13(2):129–134.
[22] Chuah AM, Lee YC, Yamaguchi T, Takamura H, Yin LJ, Matoba T. Effect of cooking on the antioxidant properties of coloured peppers. Food Chem. 2008;111(1):20–28.
[23] George DS, Razali Z, Santhirasegaram V, Somasundram C. Effects of ultraviolet light (UV-C) and heat treatment on the quality of fresh-cut Chokanan mango and Josephine pineapple. J Food Sci. 2015 Feb;80(2):S426–S434.
[24] Pérez-Burillo S, Rufián-Henares JÁ, Pastoriza S. Effect of home cooking on the antioxidant capacity of vegetables: Relationship with Maillard reaction indicators. Food Res Int. 2019 Jul;121:514–523.
[25] Vicente AR, Martínez GA, Chaves AR, Civello PM. Effect of heat treatment on strawberry fruit damage and oxidative metabolism during storage. Postharvest Biol Technol. 2006;40(2):116–122.
[26] Arzeta-Ríos AJ, Guerra-Ramírez D, Reyes-Trejo B, Ybarra-Moncada M, Zuleta-Prada H. Microwave heating effect on total phenolics and antioxidant activity of green and mature coconut water. Int J Food Eng. 2020;16(12):20190378.
[27] Benlloch-Tinoco M, Igual M, Rodrigo D, Martínez-Navarrete N. Comparison of microwaves and conventional thermal treatment on enzymes activity and antioxidant capacity of kiwifruit puree. Innov Food Sci Emerg Technol. 2013;19:166–172.
[28] Li L, Li X, Wang A, Jiang Y, Ban Z. Effect of heat treatment on physiochemical, colour, antioxidant and microstructural characteristics of apples during storage. Int J Food Sci Technol. 2013;48(4):727–734.
[29] Loayza FE, Brecht JK, Simonne AH, Plotto A, Baldwin EA, Bai J, et al. Enhancement of the antioxidant capacity of ripe tomatoes by the application of a hot water treatment at the mature-green stage. Postharvest Biol Technol. 2020;161:111054.
[30] González López VD, Cuozzo Rucci V, Torres E, Pariani Marrero Y, Silveira AC. Hot air treatment and its effect on nectarine metabolism var. big top stored at different temperatures. Agrociencia (Montev). 2019;23(2). https://doi.org/10.31285/AGRO.23.95
[31] Sogi DS, Siddiq M, Roidoung S, Dolan KD. Total phenolics, carotenoids, ascorbic acid, and antioxidant properties of fresh-cut mango (Mangifera indica L., cv. Tommy Atkin) as affected by infrared heat treatment. J Food Sci. 2012 Nov;77(11):C1197–C1202.
[32] Kim AN, Lee KY, Rahman MS, Kim HJ, Kerr WL, Choi SG. Thermal treatment of apple puree under oxygen-free condition: Effect on phenolic compounds, ascorbic acid, antioxidant activities, color, and enzyme activities. Food Biosci. 2021;39:100802.
[33] Ramírez-Moreno E, Córdoba-Díaz D, de Cortes Sánchez-Mata M, Díez-Marqués C, Go ni I. Effect of boiling on nutritional, antioxidant and physicochemical characteristics in cladodes (Opuntia ficus indica). Lebensm Wiss Technol. 2013;51(1):296–302.
[34] Cervantes-Paz B, Yahia EM, Ornelas-Paz JJ, Gardea-Béjar AA, Ibarra-Junquera V, Pérez-Martínez JD. Effect of heat processing on the profile of pigments and antioxidant capacity of green and red jalape no peppers. J Agric Food Chem. 2012 Oct;60(43):10822–10833.
[35] Jaramillo-Flores ME, González-Cruz L, Cornejo-Mazón M, Dorantes-Alvarez L, Gutiérrez-López GF, Hernández-Sánchez H. Effect of thermal treatment on the antioxidant activity and content of carotenoids and phenolic compounds of cactus pear Cladodes (Opuntia ficus-indica). Food Sci Technol Int. 2003;9(4):271–278.
[36] Papoutsis K, Pristijono P, Golding JB, Stathopoulos CE, Bowyer MC, Scarlett CJ, et al. Enhancement of the total phenolic compounds and antioxidant activity of aqueous Citrus limon L. pomace extract using microwave pretreatment on the dry powder. J Food Process Preserv. 2017;41(5):e13152.
[37] Hayat K, Zhang X, Chen H, Xia S, Jia C, Zhong F. Liberation and separation of phenolic compounds from citrus mandarin peels by microwave heating and its effect on antioxidant activity. Separ Purif Tech. 2010;73(3):371–376.
[38] Al Juhaimi F, Özcan MM, Uslu N, Ghafoor K, Babiker EE. Effect of microwave heating on phenolic compounds of prickly pear (Opuntia ficus-indica L.) seeds. J Food Process Preserv. 2018;42(2):e13437.
[39] Odriozola-Serrano I, Puigpinós J, Oms Oliu G, Herrero E, Martín-Belloso O. Antioxidant activity of thermal or non-thermally treated strawberry and mango juices by Saccharomyces cerevisiae growth based assays. Lebensm Wiss Technol. 2016;74:55–61.
[40] Fonteles TV, Leite AK, da Silva AR, Fernandes FA, Rodrigues S. Sonication effect on bioactive compounds of cashew apple Bagasse. Food Bioprocess Technol. 2017;10(10):1854–1864.
[41] Abreu DJ, de, Carvalho EE, Vilas Boas EV. Antioxidant capacity of bioactive compounds from undervaluated Red Mombin Seed (Spondias purpurea L.) Affected by different drying stages. ACS Food Sci Technol. 2021;1(4):707–716
[42] Jiménez-Aguilar DM, Escobedo-Avellaneda Z, Martín-Belloso O, Gutiérrez-Uribe J, Valdez-Fragoso A, García-García R, et al. Effect of high hydrostatic pressure on the content of phytochemical compounds and antioxidant activity of prickly pears (Opuntia ficus-indica) beverages. Food Eng Rev. 2015;7(2):198–208.
[43] Sánchez-Moreno C, Plaza L, de Ancos B, Cano MP. Impact of high-pressure and traditional thermal processing of tomato purée on carotenoids, vitamin C and antioxidant activity. J Sci Food Agric. 2006;86(2):171–179.
[44] Mena P, Martí N, Saura D, Valero M, García-Viguera C. Combinatory effect of thermal treatment and blending on the quality of pomegranate juices. Food Bioprocess Technol. 2013;6(11):3186–3199.
[45] Hager A, Howard LR, Prior RL, Brownmiller C. Processing and storage effects on monomeric anthocyanins, percent polymeric color, and antioxidant capacity of processed black raspberry products. J Food Sci. 2008 Aug;73(6):H134–H140.
[46] Endo H, Ose K, Bai J, Imahori Y. Effect of hot water treatment on chilling injury incidence and antioxidative responses of mature green mume (Prunus mume) fruit during low temperature storage. Sci Hortic (Amsterdam). 2019;246:550–556.
[47] Mikołajczyk-Bator K, Pawlak S. The effect of thermal treatment on antioxidant capacity and pigment contents in separated betalain fractions. Acta Sci Pol Technol Aliment. 2016;15(3):257–265.
[48] Somsong P, Duangmal K. Bioactive compounds and antioxidant activity in commercial mao juice products in Thailand. Acta Hortic. 2018;(1213):379–386.
[49] Chang YH, Wu SJ, Chen BY, Huang HW, Wang CY. Effect of high-pressure processing and thermal pasteurization on overall quality parameters of white grape juice. J Sci Food Agric. 2017 Aug;97(10):3166–3172.