ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M.

ISSN: 2789-5009

Leading Ecuadorian research in science, technology, engineering, arts, and mathematics.

A Bibliographic Review of Diclofenac Sodium Determination with Electrochemically Modified Sensors in Different Biological, Pharmaceutical, and water Sources

Published date: Sep 25 2024

Journal Title: ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M.

Issue title: Volume 3, Issue 4

Pages: 44–61

DOI: 10.18502/espoch.v3i4.17164

Authors:

J. Hidalgojuansannin2595@gmail.comUniversity of Pannonia, Soós Ernő Research and Development Center, H-8800, Nagykanizsa Zrínyi Miklós Street 18. HUNGARY

I. GalambosUniversity of Pannonia, Soós Ernő Research and Development Center, H-8800, Nagykanizsa Zrínyi Miklós Street 18. HUNGARY

G. Turdean“Babes-Bolyai” University, Faculty of Chemistry and Chemical Engineering, Department of Chemical Engineering, Research Center of Electrochemistry and Non-Conventional Materials, Arany Janos St.11, RO-400028, Cluj-Napoca, Romania

Abstract:

Diclofenac sodium (DS) attracts the interest of researchers because it is one of the most prevalent pharmaceuticals in aqueous matrices and has the potential to harm aquatic life. However, most of the techniques used to analyze it are expensive and require a highly trained professional to perform them. On the other hand, there is the possibility of testing DS with electrochemical sensors. They are currently available for determining contaminants in different samples (tablets, blood, urine), but only a few articles analyze DS in wastewater. This is how the selection of articles for the review was organized by the type of modifier used in the working electrode. In addition, recent improvements in DS detection using electrochemical techniques in pharmaceutical formulations, biological fluids, and environmental materials were provided and discussed, along with a brief description of the results and methods used in the development publications.

Keywords: diclofenac sodium, wastewater, modifier, electrochemical detection..

Resumen

El diclofenaco sódico (DS) atrae el interés de los investigadores porque es uno de los productos farmacéuticos más presentes en matrices acuosas y tiene el potencial de dañar la vida acuática. Sin embargo, la mayoría de las técnicas utilizadas para analizarlo son costosas y requieren de un profesional altamente capacitado para realizarlas. Por otro lado, existe la posibilidad de probar DS con sensores electroquímicos. Actualmente están disponibles para la determinación del contaminante en diferentes muestras (tabletas, sangre, orina), pero sólo unos pocos artículos analizan el DS en aguas residuales. Es así como la selección de los artículos para la revisión se organizó por el tipo de modificador utilizado en el electrodo de trabajo. Además, se brindaron y discutieron mejoras recientes en la detección de DS mediante técnicas electroquímicas en formulaciones farmacéuticas, fluidos biológicos y materiales ambientales, junto con una breve descripción de los resultados y métodos empleados en las publicaciones de desarrollo.

Palabras Clave: Diclofenaco Sódico, Aguas Residuales, Modificador, Detección Electroquímica.

References:

[1] Starling VM, Amorim CC, Leão Occurrence MM. Legacy and emerging pollutants in Latin America: A critical review of occurrence and levels in environmental and food samples. J Hazard Mater. 2019;372:17–36.

[2] Khanmohammadi A, Jalili Ghazizade A, Hashemi P, Afkhami A, Arduini F, Bagheri HJ. An electrochemical impedance spectroscopy-based aptasensor for the determination of SARS-CoV-2-RBD using a carbon nanofiber–gold nanocomposite modified screen-printed electrode. Iran Chem Soc. 2020;17:2429–2447.

[3] Meijer D, Wilting J. Removal and tracing of cephalosporins in industrial wastewater by SPE-HPLC: Optimization of adsorption kinetics on mesoporous silica nanoparticles. Eur J Pharm Biopharm. 1997;43:243–252.

[4] Mehinto AC, Hill EM, Tyler CR. Occurrence of pharmaceuticals in municipal wastewater treatment plants and receiving surface waters in central and southern Finland. Environ Sci Technol. 2010;44:2176–2182.

[5] Zhang Y, Geissen SU, Gal C. Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. Chemosphere. 2008 Nov;73(8):1151–1161.

[6] de Souza RL, Tubino M. Spectrophotometric determination of diclofenac sodium in pharmaceutical tablets via oxidative coupling reaction with 2,4-dinitrophenyl hydrazine in the presence of potassium periodate. J Braz Chem Soc. 2005;16:1068.

[7] El-Didamony AM, Amin AS. Adaptation of a color reaction for spectrophotometric determination of diclofenac sodium and piroxicam in pure form and in pharmaceutical formulations. Anal Lett. 2004;37(6):1151–1162.

[8] Carreira LA, Rizk M, EI-Shabrawy Y, Zakhari NA, Toubar SS. Quantitative determination of diclofenac sodium in solid dosage forms by FT-Raman spectroscopy. J Pharm Biomed Anal. 1995;13(11):1331–1337.

[9] Yilmaz B, Ciltas U. Determination of diclofenac in pharmaceutical preparations by voltammetry and gas chromatography methods. J Pharm Anal. 2015 Jun;5(3):153– 160.

[10] Lalwani G, Henslee AM, Farshid B, Lin L, Kasper FK, Qin YX, et al. Two-dimensional nanostructure-reinforced biodegradable polymeric nanocomposites for bone tissue engineering. Biomacromolecules. 2013 Mar;14(3):900–909.

[11] Tawfik GM, Dila KA, Mohamed MY, Tam DN, Kien ND, Ahmed AM, et al. A step by step guide for conducting a systematic review and meta-analysis with simulation data. Trop Med Health. 2019 Aug;47(1):46.

[12] Baranwal J, Barse B, Gatto G, Broncova G, Kumar A. Electrochemical sensors and their applications: A review. Chemosensors (Basel). 2022;10(9):363.

[13] Sarhangzadeh K, Khatami A, Jabbari M, Bahari S. Simultaneous determination of diclofenac and indomethacin using a sensitive electrochemical sensor based on multiwalled carbon nanotube and ionic liquid nanocomposite. J Appl Electrochem. 2013;43:1217–1224.

[14] Zubiarrain-Laserna A, Kruse P. Review—Graphene-Based Water Quality Sensors. J Electrochem Soc 37:167.

[15] Honaker NC, Malode SJ, Kulkarni RM, Shetti NP. Electrochemical behavior of diclofenac sodium at core-shell nanostructure modified electrode and its analysis in human urine and pharmaceutical samples. Sensors (Basel). 2020;1:100002.

[16] Nguyen D, Quang-Hai L, Tuan-Linh N, Van-Tuan D, Hoai N, Hong-Nam P, et al. Nanostructured mixed layers of organic materials obtained by nanosphere lithography and electrochemical reduction of aryldiazonium salts. J Electroanal Chem (Lausanne). 2022;921:116709.

[17] de Carvalho R, Bettsa AJ, Cassidya JF. Metal nanoparticles and carbon-based nanomaterials for improved performances of electrochemical (bio)sensors with biomedical applications. Micro J. 2020;158.

[18] Afkhami A, Bahiraei A, Madrakian T. Amperometric detection of diclofenac at a nanostructured multi-wall carbon nanotubes sensing films. Mater Sci Eng. 2016;59:168– 176.

[19] Salahuddin M, Akhter S, Basirun W, Alhaji Mohammed M, Abd Rahman N, Salleh N. Synthesis of novel nano-sulfonamide metal-based corrosion inhibitor surfactants. Surf Interfaces. 2022.v

[20] Karuppiah C, Cheemalapati S, Chen S, Palanisamy S. Carboxyl-functionalized graphene oxide-modified electrode for the electrochemical determination of nonsteroidal anti-inflammatory drug diclofenac. Ionics. 2015;21(1):231–238.

[21] Blanco-López MC, Lobo-Castañón MJ, Miranda-Ordieres AJ, Tuñón-Blanco P. Voltammetric response of diclofenac-molecularly imprinted film modified carbon electrodes. Anal Bioanal Chem. 2003 Sep;377(2):257–261.

[22] Shalauddin M, Akhter S, Bagheri S, Sayuti M, Adib N, Basirun W. Immobilized copper ions on MWCNTS-Chitosan thin film: an enhanced amperometric sensor for electrochemical determination of diclofenac sodium in aqueous solution. Int J Hydrogen Energy. 2017;42(31):19951–19960.

[23] Shalauddin Md, Shamima Akhter A, Jeffre W, Basirun, Bagheri S, Nadzirah S, Rafie M. Hybrid nanocellulose/f-MWCNTs nanocomposite for the electrochemical sensing of diclofenac sodium in pharmaceutical drugs and biological fluids. Ele Acta. 2019;304.

[24] Berto S, Cagno E, Prenesti E, Aragona E, Bertinetti G, Giacomino S, et al. Voltametric study for the determination of diclofenac in aqueous solutions using electroactivated carbon electrodes. Appl Sci (Basel). 2022;12(16):7983.

[25] Thiagarajan S, Rajkumar M, Chen S. Nano TiO2 -PEDOT film for the simultaneous detection of ascorbic acid and diclofenac. Int J Electrochem Sci. 2012;7(3):2109– 2122.

[26] Shalauddin M, Akhter S, Wan J, Akhtaruzzaman M, Alhaji M, Abd Rahman M, et al. Hybrid nanocellulose/f-MWCNTs nanocomposite for the electrochemical sensing of diclofenac sodium in pharmaceutical drugs and biological fluids. Electrochim Acta. 2019;304:323–333.

[27] Shalauddin M, Akhter S, Wan J, Akhtaruzzaman M, Alhaji M, Abd Rahman M, et al. Bio-synthesized copper nanoparticle decorated multiwall carbon nanotube-nano cellulose nanocomposite: An electrochemical sensor for the simultaneous detection of acetaminophen and diclofenac sodium. Surf Interfaces. 2022;34(102385).

[28] Parvizi G, Alipour E, Ali Sabzi R. Modification of a disposable pencil graphite electrode with multiwalled carbon nanotubes: Application to the electrochemical determination of diclofenac sodium in some pharmaceutical and biological samples. Anal Methods. 2016.

[29] Geim AK, MacDonald AH. Graphene: exploring carbon flatland. Phys Today. 2020;60:35. (2007).

[30] Brennan E, Futvoie P, Cassidy J, Schazmann B. Int J Environ An Ch. 2017;97:588–596.

[31] Aguilar-Liraa G, Álvarez GA, Zamora A, Palomar M, Rojas A, Rodríguez JA, et al. New insights on diclofenac electrochemistry using graphite as working electrode. J Electroanal Chem (Lausanne). 2017;794:182–188.

[32] Kokab T, Shah A, Abdullah M, Arshad M, Nisar J, Naeem M, et al. Simultaneous femtomolar detection of paracetamol, diclofenac, and orphenadrine using a carbon nanotube/zinc oxide nanoparticle-based electrochemical sensor. ACS Appl Nano Mater. 2021;4(5):4699–4712.

[33] El-Wekil M, Alkahtani A, Hassan Refat A, Ashraf MM. Advanced sensing nanomaterials-based carbon paste electrode for simultaneous electrochemical measurement of esomeprazole and diclofenac sodium in human serum and urine samples. J Mol Liq. 2018;262:495–503.

[34] Naz S. “Graphene oxide functionalized with silver nanoparticles and ZnO synergic nanocomposite as an efficient electrochemical sensor for diclofenac sodium.” NANO: Brief Reports and Reviews. 16(12):1-13. https://doi.org/10.1142/S1793292021501393

[35] Haichi Y, Jianhang J, Qiuju L, Yingzhi L. Electrochemical determination of diclofenac sodium in pharmaceutical sample using copper nanoparticles/reduced graphene oxide modified glassy carbon electrode. Int J Electrochem Sci. 2021;:16.

[36] Eteya M, Rounaghi H, Deiminiat B. Fabrication of a new electrochemical sensor based on AuePt bimetallic nanoparticles decorated multi-walled carbon nanotubes for determination of diclofenac. Microchem J. 2019;144:254–260.

[37] Elbalkiny HT, Yehia AM, Riad SM, Elsaharty YS. A. M. YehiaSaf, M. RiadYasser, S. Elsahart. 2019. Potentiometric diclofenac detection in wastewater using functionalized nanoparticles. Microchem J. 2019;145:90–95.

[38] Manea F, Ihos M, Remes A, Burtica G, Schoonmanc J. Electrochemical determination of diclofenac sodium in aqueous solution on Cu-Doped zeolite-expanded graphiteepoxy electrode. Electroanalysis. 2010;22(17-18):2058–2063.

[39] Reza Baezzat M, Tavakkoli N, Zamani H. Synthesis of novel nano-sulfonamide metalbased corrosion inhibitor surfactants. Anal Bioanal Chem Res. 2022;9:153–162.

[40] Killedar L, Ilager D, Shetti NP, Aminabhavi TM, Reddy K. Construction of a new electrochemical sensor based on MoS2 nanosheets modified graphite screen printed electrode for simultaneous determination of diclofenac and morphine. J Mol Liq. 2021;340:116891.

[41] Nasiri F, Hossein Rounaghi G, Ashraf N, Deiminiat B. A new electrochemical sensing platform for quantitative determination of diclofenac based on gold nanoparticles decorated multiwalled carbon nanotubes/graphene oxide nanocomposite film. Int J Environ An Ch. 2019.

[42] Santini AO, Pezza HR, Pezza L. Determination of diclofenac in pharmaceutical preparations using a potentiometric sensor immobilized in a graphite matrix. Talanta. 2006 Jan;68(3):636–42.

[43] Ankit K, Ravindra K, Shreanshi A, Tiwari I. Oxidized g-C3N4 decorated with Cu– Al layered double hydroxide as a sustainable electrochemical sensing material for quantification of diclofenac. Mater Chem Phys. 2023;:294.

[44] Oliveira MC, Bindewald EH, Marcolino LH Jr, Bergamini MF. Potentiometric determination of Diclofenac using an ion-selective electrode prepared from polypyrrole films. J Electroanal Chem (Lausanne). 2017;732:11–16.

[45] Mostafavi M, Yaftian M, Piri F, Shayani-Jam H. A new diclofenac molecularly imprinted electrochemical sensor based upon a polyaniline/reduced graphene oxide nanocomposite. Biosens. Bioelectron. 2018;122:160-167.

[46] Schirmer C, Posseckardt J, Schröder M, Gläser M, Howitz S, Scharff W, et al. Portable and low-cost biosensor towards on-site detection of diclofenac in wastewater. Talanta. 2019 Oct;203:242–247.

[47] Kormosha Z, Hunkaa I, Bazel Y. A potentiometric sensor for the determination of diclofenac. J Anal Chem. 2009;64(8):853–858.

[48] Dinh-Hai-Ngan N, Quang-Hai L, Tuan-Linh N, Van-Tuan D, Hoai-Nam N, Hong-Nam P, et al. Electrosynthesized nanostructured molecularly imprinted polymer for detecting diclofenac molecule. J Electroanal Chem (Lausanne). 2022;:921.

[49] Brennan E, Futvoie P, Cassidy J, Schazmann B. An ionic liquid-based sensor for diclofenac determination in water. Int J Environ An Ch. 2017. https://doi.org/10.1080/03067319.2017.1333607

[50] Arvand M, Gholizadeh TM, Zanjanchi MA. MWCNTs/Cu(OH)2 nanoparticles/IL nanocomposite modified glassy carbon electrode as a voltammetric sensor for determination of the non-steroidal anti-inflammatory drug diclofenac. Mater Sci Eng C. 2012 Aug;32(6):1682–1689.

Download
HTML
Cite
Share
statistics

6 Abstract Views

13 PDF Downloads