ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M.

ISSN: 2789-5009

Leading Ecuadorian research in science, technology, engineering, arts, and mathematics.

Study of the Incidence of CO and CO2 Gas Emission Levels and Temperature, of the Automotive Air Conditioning System Inside an Interprovincial Bus at Different Environmental and Operating Conditions

Published date: Jul 24 2024

Journal Title: ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M.

Issue title: Volume 3, Issue 3

Pages: 193–235

DOI: 10.18502/espoch.v3i3.16622

Authors:

Ángel Danilo Parra ParraDanilo.parra@espoch.edu.ecEscuela Ingeniería Automotriz, Facultad de Mecánica, Escuela Superior Politécnica de Chimborazo, Panamericana Sur km 1 1/2, Riobamba Ecuador

Luis Fernando Taguada CruzEscuela Ingeniería Automotriz, Facultad de Mecánica, Escuela Superior Politécnica de Chimborazo, Panamericana Sur km 1 1/2, Riobamba Ecuador

Johnny Pancha RamosEscuela Ingeniería Automotriz, Facultad de Mecánica, Escuela Superior Politécnica de Chimborazo, Panamericana Sur km 1 1/2, Riobamba Ecuador

Víctor Bravo MorochoEscuela Ingeniería Automotriz, Facultad de Mecánica, Escuela Superior Politécnica de Chimborazo, Panamericana Sur km 1 1/2, Riobamba Ecuador

Abstract:

The present curricular integration work proposes to analyze the levels of CO and CO2 gas emissions in the passenger compartment of an interprovincial bus, considering environmental and functional conditions, to obtain values that are analyzed, allowing to know the comfort conditions of the passenger, and considering an ideal temperature of 22∘C. The study was carried out on the selected route during the bus route, both in the central and peripheral urban sectors, where the influx of users is notable throughout the day. The field measurements were carried out (August 5-10), inside the passenger compartment of an interprovincial bus, considering operating variables of the automotive air conditioning system, such as condition, OFF, air recirculation, and air renewal. Data were collected in the passenger compartment’s front, middle, and rear sections. An IAQ TESTO 440 gas analyzer was used through the CO2 and the CO probe, located at a height of 1.1 m from the floor, which was considered as the average respiratory level of the passenger, generating the data in lapses of 10 min. Once the analysis has been carried out, the data is tabulated and the concentration levels of emissions produced by the users’ exhalation are determined. Finally, by tabulating the data, it was possible to know the concentration percentages of the gas emissions produced by the users, in the different locations of the passenger compartment. It is recommended that for future research, a study be carried out with data collected from a full day of travel.

Keywords: Air conditioning, optimization, gas emissions, air quality, passenger cabin, comfort, gas analyzer, interprovincial transport.

Resumen

Este trabajo de integración interna propone analizar el CO2 y las emisiones de CO2 en el habitáculo de los autobuses interurbanos, teniendo en cuenta las condiciones ambientales y funcionales, para obtener los valores analizados, que permitan conocer el estado de confort del pasajero. Teniendo en cuenta la temperatura ideal de 22∘C. En la ruta seleccionada, el estudio se realizó a lo largo de la ruta del bus, tanto en la zona céntrica como en la semiurbana donde hay una gran cantidad de usuarios a lo largo del día. Se realizaron mediciones de campo (del 5 al 10 de agosto) al interior del habitáculo de un bus interurbano, teniendo en cuenta variables operativas del sistema de aire acondicionado del vehículo como condición, apagado, recirculación de aire y cambio de aire. Los datos se recopilan en las partes delantera, media y trasera de la cabina. El analizador de gases IAQ TESTO 440 se utiliza como medio para los detectores de CO2 y CO, colocado a una altura de 1,1 metros del estanque, que se considera la frecuencia respiratoria media del pasajero, produce datos en un tiempo breve en 10 minutos. Una vez que se completa el análisis, se tabulan los datos y se determina la concentración exhalada del usuario. Finalmente, es posible conocer el porcentaje de emisiones generadas por el usuario, en diferentes puntos del habitáculo. Se recomienda que se realice un estudio con los datos recopilados en el transcurso de un día de viaje para futuras investigaciones.

Palabras Clave: emisiones de gases, transporte interprovincial, analizador de gases, aire acondicionado, calidad del aire, habitáculo de pasajeros.

References:

[1] Sc C, Sc CO. No 主観的健康感を中心とした在宅高齢者における 健康関連指標に関する共分散構造分析Title. China; 2013. pp. 10-7. [Consulta: 18 nobiembre 2021].

[2] Mar CS. Trabajo de Diploma Impacto sobre la contaminación atmosférica de la Pensamiento., [en linea], 2014, pp. 8-15.

[3] Dirks K, Wang JY, Khan A. Exposición a la contaminación del aire en relación con el viaje a la escuela: un estudio de caso de Bradford [en linea]Reino Unido; 2016.

[4] Kamar HM, Kamsah N. Simulación CFD de la temperatura del aire dentro del compartimiento de pasajeros de un autobús., [en linea], 2015, pp. 5-9.

[5] Brodzik K, Faber J. In-vehicle air quality – recent trends in requirements and testing methods. AUTOBUSY – Technika, Eksploatacja, Systemy Transportowe, [en linea], 2018, (Hong Kong) vol. 19, no. 9, pp. 41-44. [Consulta: 17 junio 2021]. ISSN 1509- 5878. https://doi.org/10.24136/atest.2018.279

[6] Campagnoli E, Torino P. Preliminary investigation on thermal behavior of vehicles in different climate conditions, no. 1. Malasia; 2019. pp. 103-8.

[7] Cheik GC, Perlis UM, Kamarudin LM, Perlis UM, Shukri S, Perlis UM, et al. Monitoreo de dióxido de carbono (CO 2) Acumulación en la cabina del vehículo. no. Co 2. (2016), (United States of America) pp. 14-17.

[8] Faber J, Brodzik K. Air quality inside passenger cars. AIMS Environmental Science, vol. 4, no. 1, [en linea], 2017, (United States of America) pp. 112-133. [Consulta: 11 septiembre 2021]. ISSN 2372-0352. https://doi.org/10.3934/environsci.2017.1.112

[9] Cha Y. In-cabin carbon dioxide and health effects Yingying Cha specifications, dimensions and drawings may be subject to change without notice, no, [en linea], 2019, (Taiwan) October. [Consulta: 08 junio 2021]. https://doi.org/10.13140/RG.2.2.22676.86405

[10] Ahmad Shafie NE, Mohamed Kamar H, Kamsah N. Field measurement of particulate matter inside a bus passenger compartment. Jurnal Teknologi, vol. 77, [en linea], 2015b. no. 30, pp. 69

73. [Consulta: 30 agosto 2021]. ISSN 01279696. https://doi.org/10.11113/jt.v77.6870

[11] Mathur GD. Field tests to monitor build-up of carbon dioxide in vehicle cabin with AC system operating in recirculation mode for improving cabin IAQ and safety. SAE Technical Papers, no. [en línea], April 2008, (United state of America), [Consulta: 9 noviembre 2021]. ISSN 26883627. https://doi.org/10.4271/2008-01-0829

[12] Lee TYK, Lee SH. Combustion and emission characteristics of wood pyrolysis oil-butanol blended fuels in a di diesel engine. International Journal of … [en línea], vol. 13, no. 2, 2012, pp. 293-300. [Consulta: 29 octubre 2021]. ISSN 1229-9138. https://doi.org/10.1007/s12239. Disponible en: http://link.springer.com/article/10.1007/s12239-012-0027-2

[13] Masivo AY. Automóviles y tránsito masivo., no. Atkinson; 2000. pp. 45-55. [en linea].

[14] Mathur GD. Development of a model to predict build-up of cabin carbon dioxide concentrations in automobiles for indoor air quality. SAE Technical Papers, vol. 2017-March, [en línea], 2017, no. March, (United state of America), [Consulta: 9 noviembre 2021]. ISSN 01487191. https://doi.org/10.4271/2017-01-0163

[15] Zhang L, Qi L, Liu J, Wu Q. Experimental study on dynamic thermal environment of passenger compartment based on thermal evaluation indexes. Science Progress, [en línea], vol. 103, no. 3, Malasia, 2020. pp. 1-21. [Consulta: 2 diciembre 2021]. ISSN 20477163. https://doi.org/10.1177/0036850420942991

[16] Kumar P, Gupta NC, Parmar KS. Comparisons of particulate matters exposure to commuters in different transportation modes in Delhi. Sustainable Environment Research, vol. 24, no. 5, [en linea], 2014, pp. 373-380. [Consulta: 09 octubre 2021]. ISSN 24682039

[17] Danca PA, Nastase I, Croitoru C, Bode F, Sandu M. Thermal comfort evaluation inside a car parked under sun and shadow using a thermal manikin. IOP Conference Series: Earth and Environmental Science, vol. 664, no. 1, [en linea], 2021, Reino Unido, pp. 12-64. [Consulta: 08 junio 2021]. ISSN 1755-1307. https://doi.org/10.1088/1755-1315/664/1/012064

[18] Atkinson WJ, Hill WR, Mathur GD. The impact of increased air recirculation on interior cabin air quality. SAE Technical Papers, vol. 2017-March, no, [en linea], 2017, (United States of America). [Consulta: 15 junio 2021]. ISSN 01487191. https://doi.org/10.4271/2017-01-0169

[19] Kolluru SS, Patra AK, Sahu SP. A comparison of personal exposure to air pollutants in different travel modes on national highways in India. Science of the Total Environment, vol. 619-620, [en linea], 2018, pp. 155-164. [Consulta: 09 julio 2021]. ISSN 18791026. https://doi.org/10.1016/j.scitotenv.2017.11.086

[20] ASHRAE. Automobiles and mass transit. ASHRAE Handbook—HVAC Applications (SI), no. Atkinson (2007), (United States of America) pp. 9.1-9.20.

[21] Falih M. Ventilation for acceptable indoor air quality. ASHRAE Standard, no. 62.1., [en linea], 2004, (United state of America), pp. 11-20. [Consulta: 07 julio 2021]. ISSN 10412336.

[22] Mathur G. Use of partial recirculation to limit build-up of cabin carbon dioxide concentrations to safe limits per ASHRAE Standard-62. SAE Technical Papers, [en línea], vol. 2020-April, no. April. 2020, (United States of America), [Consulta: 9 noviembre 2021]. ISSN 01487191. https://doi.org/10.4271/2020-01-1245.

[23] Zhou X, Lai D, Chen Q. Experimental investigation of thermal comfort in a passenger car under driving conditions. Building and Environment, [en línea], vol. 149, San Francisco, 2019, pp. 109-119. [Consulta: 2 julio 2021]. ISSN 03601323. https://doi.org/10.1016/j.buildenv.2018.12.022

[24] TESTO. Medidores para climatización [en línea]2021. pp. 1-12. [Consulta: 5 nobiembre 2021].

[25] Mathur GD. Effect of cabin volume on build-up of cabin carbon dioxide concentrations from occupant breathing in automobiles. SAE Technical Papers, vol. 2018- April, no. [en línea], (United state of America), [Consulta: 9 noviembre 2021]. ISSN 01487191. https://doi.org/10.4271/2018-01-0074

[26] Saikin AM, Buznikov SE, Zhuravlev AV, Zaytseva EP, Lebedev AV, Kuznetsov DA. Test methods and equipment for assessment of passenger compartment environmental parameters of modern and advanced driverless vehicles. IOP Conference Series: Materials Science and Engineering, [en línea], vol. 819, no. 1., España, 2020. [Consulta: 12 nobiembre 2021]. ISSN 1757899X. https://doi.org/10.1088/1757- 899X/819/1/012029

[27] Certificación MY. ”Contenido De Contaminantes En El Interior De La Cabina Del Conductor Y Del Pasajero Compartimiento”. Requisitos técnicos y métodos de prueba. (2016), (United States of America) pp. 1-22.

[28] Goh CC, Kamarudin LM, Shukri S, Abdullah NS, Zakaria A. Monitoring of carbon dioxide (CO2) accumulation in vehicle cabin. 3rd International Conference on Electronic Design, ICED, [en linea], 2016, no. August, pp. 427-432. [Consulta: 07 julio 2021]. https://doi.org/10.1109/ICED.2016.7804682

[29] Dagnino S. J., Análisis de varianza. Revista Chilena de Anestesia, vol. 43, no. 4, [en linea], 2014, pp. 306-310. [Consulta: 23 junio 2021]. ISSN 07164076.

[30] Dirks KN, Talbot N, Salmond JA, Costello SB. In-cabin vehicle carbon monoxide concentrations under different ventilation settings. Atmosphere, vol. 9, no. 9, [en linea], 2018, New Zeland, pp. 1-14. [Consulta: 18 julio 2021]. ISSN 20734433. https://doi.org/10.3390/atmos9090338

[31] Szczurek A, Maciejewska M. Categorisation for air quality assessment in car cabin. Transportation Research Part D: Transport and Environment, [en línea], vol. 48, España, 2016., pp. 161-170. [Consulta: 12 nobiembre 2021]. ISSN 13619209. Disponible en: https://doi.org/10.1016/j.trd.2016.08.015

[32] Musat R, Brasov UT, Helerea E, Brasov UT. Parámetros y modelos del vehículo Confort térmico Parámetros y modelos del vehículo Comodidad térmica., [en línea], 2016, pp. 1-5.

[33] Musat R, Helerea E. Parameters and models of the vehicle thermal comfort. Acta Universitatis Sapientiae Electrical and Mechanical Engineering [en línea], vol. 1, no. January 2009, pp. 215-226. [Consulta: 18 noviembre 2021]. Disponible en: http://www.acta.sapientia.ro/acta-emeng/C1/emeng1-19.pdf

[34] Pham L, Molden N, Boyle S, Johnson K, Jung H. Development of a standard testing method for vehicle cabin air quality index. SAE International Journal of Commercial Vehicles, [en línea], vol. 12, no. 2., 2019, [Consulta: 22 noviembre 2021]. ISSN 19463928. https://doi.org/10.4271/02-12-02-0012.

[35] Qin D, Guo B, Zhou J, Cheng H, Chen X. Indoor air formaldehyde (HCHO) pollution of urban coach cabins. Scientific Reports, [en línea], vol. 10, no. 1, Bently, 2020.pp. 1-9. [Consulta: 2 junio 2021]. ISSN 20452322. https://doi.org/10.1038/s41598- 019-57263-4.pp. 1-9. [Consulta: 2 junio 2021]. ISSN 20452322. https://doi.org/10.1038/s41598- 019-57263-4.

Download
HTML
Cite
Share
statistics

36 Abstract Views

33 PDF Downloads