ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M.

ISSN: 2789-5009

Leading Ecuadorian research in science, technology, engineering, arts, and mathematics.

Construction of Bioreactors for Obtaining Mycelium from Agaricus Brunnescens and Pleurotus Ostreatus Mushrooms Using the Honey Tek Technique

Published date: Nov 09 2023

Journal Title: ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M.

Issue title: Volume 3 Issue 1

Pages: 599 - 610

DOI: 10.18502/espoch.v3i1.14475

Authors:

Angela Ortiz-Bastidasangela.ortiz@espoch.edu.ecESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO (ESPOCH), Riobamba, Ecuador

Kevin Altamirano-CabayESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO (ESPOCH), Riobamba, Ecuador

Alfonso Suárez-TapiaESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO (ESPOCH), Riobamba, Ecuador

Abstract:

Mycelium cultivation plays an important role in mushroom production and in various biotechnological studies. Submerged fermentation has received much attention as a promising alternative for the efficient production of mushroom biomass and active metabolites. For the following research, bioreactors were constructed to obtain pure mycelium from Pleurotus ostreatus and Agaricus brunnescens mushrooms using the Honey technique. This method is based on using honey as the main nutrient for the growth of microorganisms on an industrial scale. In the beginning, spore impressions were extracted by the dry chamber method and inoculated into the honey broth. The bioreactors were dimensioned with a 2.5 L culture chamber, 2 L production, controlled temperature of 28∘C, pH = 4, and agitation of 120 revolutions per minute. Conidia/milliliter was quantified every three days with a Neubauer chamber, and the Kjeldahl method was used to identify protein as the main bioactive metabolite of the mycelium. Finally, the mycelium obtained was evaluated on three types of substrates comparing their colonization time. The use of bioreactors in mycelium cultivation is efficient as better mycelium quality, higher biomass yield, and more dispersion on substrates are obtained. It also has the benefits of much better oxygen mass transfer and culture homogeneity. With this technique, physical, chemical, and biological factors can be controlled to produce mushrooms in a much shorter time.

Keywords: bioreactor, honey technic, mycelial biomass, Agaricus brunnescens, Pleurotus ostreatus.

Resumen

El cultivo de micelio juega un papel importante en la producción de hongos y en diversos estudios biotecnológicos, el usar la fermentación sumergida ha recibido mucha atención como alternativa prometedora para la producción eficiente de la biomasa de hongos y metabolitos activos. Para la siguiente investigación se construyeron biorreactores con el objetivo de obtener micelio puro de hongos Pleurotus ostreatus y Agaricus brunnescens usando la técnica Honey. El método Honey se basa en aprovechar la miel como nutriente principal para el crecimiento de microorganismos a escala industrial. En principio se extraen impresiones de esporas mediante el método de cámara seca y se inoculan en caldo honey. Los biorreactores se dimensionaron con una cámara de cultivo de 2,5 litros, producción de dos litros, temperatura controlada de 28 grados Celsius, pH igual a cuatro y agitación de 120 revoluciones por minuto. Se cuantificaron los conidios/mililitro cada tres días con una cámara de Neubauer y se usó el método Kjeldahl para identificar la proteína como principal metabolito bioactivo del micelio. Finalmente, el micelio obtenido fue evaluado sobre tres tipos de sustratos comparando su tiempo de colonización. El uso de biorreactores en el cultivo de micelio es eficiente debido a que se obtiene mejor calidad de micelio, mayor rendimiento de biomasa y más dispersión sobre sustratos. Así mismo, posee los beneficios de una transferencia de masa de oxígeno y una homogeneidad de cultivo mucho mejores. Con esta técnica se pueden controlar factores físicos, químicos y biológicos para producir setas en tiempos mucho más cortos.

Palabras Clave: biorreactor, honey tek, biomasa micelial, Agaricus brunnescens, Pleurotus ostreatus.

References:

[1] Argyropoulos D, Psallida C, Sitareniou P, Flemetakis E, Diamantopoulou P. Biochemical evaluation of Aga-ricus and Pleurotus strains in batch cultures for production optimization of valuable metaboli-tes. Microorganisms. 2022;(10 Suppl):964.

[2] Bakratsas G, Colidera A, Katapodis P, Stamatis H. Tendencias recientes en el cultivo sumergido de hongos y su aplicación como fuente de nutracéuticos y aditivos alimentarios. Alimentos del futuro. 2021;(4 Suppl):100086.

[3] Bonatti M, Karnopp P, Soares HM, Furlan SA. Evaluation of Pleurotus ostreatus and Pleurotus sajor-caju nutritional characteristics when cultivated in different lignocellulosic wastes. Food Chemistry. 2004;88(Suppl 3):425–428.

[4] Campestrini LH, Salles-Campos C. Aspectos del cultivo de hongos para la obtención de polisacáridos en cul-tivo sumergido. Diario Africano de Biotecnología. 2021;20(Suppl 2):100–107.

[5] Cohen R, Persky L, Hadar Y. Biotechnological applications and potential of wood-degrading mushrooms of the genus Pleurotus. Applied Microbiology and Biotechnology. 2002 Apr;58(5):582–594.

[6] Chmelová D, Legerská B, Kunstová J, Ondrejovič M, Miertuš S. La producción de lacasas por hongos de pudrición blanca en condiciones de fermentación en estado sólido. Revista mundial de microbiología y biotec-nología. 2022;38(Suppl 2):1-20.

[7] Chitra K, Venkatesh R, Dhanalakshmi K, Sharavanan PT, Sasikumar CB, Vijayakumari KK. Producción y análisis económico del hongo ostra (Pleurotus florida) . International Journal of Current Microbiology and Applied Sciences 2018;7:379–383.

[8] Correa RC, Brugnari T, Bracht A, Peralta RM, Ferreira IC. Biotechnological, nutritional and therapeutic uses of Pleurotus spp.(Oyster mushroom) related with its chemical composition: A review on the past decade fin-dings. Trends in Food Science and Technology. 2016;50:103–117.

[9] Deepalakshmi K, Sankaran M. Pleurotus ostreatus: an oyster mushroom with nutritional and medicinal pro-perties. Journal of Biochemical Technology. 2014;5(Suppl 2):718–726.

[10] Dissasa G. Cultivation of different oyster mushroom (Pleurotus species) on coffee waste and determina-tion of their relative biological efficiency and pectinase enzyme production, Ethiopia. International Journal of Microbiology, [Internet]. 2022 [cited 08 October 2021];3. Available from: https://www.hindawi.com/journals/ijmicro/2022/5219939/

[11] García A, García O, Velázquez M, García C, García A, Cortez H. Miniaturization of f1 adults from female aedes aegypti1 exposed to beauveria bassiana-contaminated males in a two-factor design. Southwest Entomo-logist. 2022;47(Suppl 2):299–302.

[12] Guiao, KS, Tzoganakis, C. Mekonnen, TH Procesamiento mecanoquímico verde de biomasa lignoceluló-sica para recuperación de lignina. Quimiosfera. 293. 2022.

[13] Grimm D, Wösten HA. Mushroom cultivation in the circular economy. Applied Microbiology and Bio-technology. 2018 Sep;102(18):7795–7803.

[14] Hölker U, Lenz J. Solid-state fermentation—are there any biotechnological advantages? Current Opinion in Microbiology. 2005 Jun;8(3):301–306.

[15] Hussain S, Al-Kharousi M, Al-Muharabi MA, Al-Maqbali D, Al-Shabibi Z, Al-Balushi AH, et al. Phylo-geny of Agaricus subgenus Pseudochitonia with the description of a new section and a new species from Oman. Mycological Progress. 2022;21(Suppl 8):1–13.

[16] Israili ZH. Antimicrobial properties of honey. American Journal of Therapeutics. 2014;21(4):304–323.

[17] Iwanicki NS, Mascarin GM, Moreno SG, Eilenberg J, Delalibera Júnior I. Growth kinetic and nitrogen source optimization for liquid culture fermentation of Metarhizium robertsii blastospores and bioefficacy against the corn leafhopper Dalbulus maidis. World Journal of Microbiology and Biotechnology. 2020 Apr;36(5):71.

[18] Kalac P. Chemical composition and nutritional value of European species of wild growing mushrooms: A review. Food Chemistry. 2009;113(1):9–16.

[19] Kuhad RC, Singh A. Lignocellulose biotechnology: Current and future prospects. Critical Reviews in Bio-technology. 1993;13(Suppl 2):151–172.

[20] Kumar K, Mehra R, Guiné RP, Lima MJ, Kumar N, Kaushik R, et al. Edible mushrooms: A comprehensive review on bioactive compounds with health benefits and processing aspects. Foods. 2021 Dec;10(12):2996.

[21] Lavelli V, Proserpio C, Gallotti F, Laureati M, Pagliarini E. Circular reuse of bioresources: The role of Pleurotus spp. in the development of functional foods. Food & Function. 2018 Mar;9(3):1353–1372.

[22] Wan Mahari WA, Peng W, Nam WL, Yang H, Lee XY, Lee YK, et al. A review on valorization of oyster mushroom and waste generated in the mushroom cultivation industry. Journal of Hazardous Materials. 2020 Dec;400:123156.

[23] Mattila P, Salo-Väänänen P, Könkö K, Aro H, Jalava T. Basic composition and amino acid contents of mushrooms cultivated in Finland. Journal of Agricultural and Food Chemistry. 2002 Oct;50 22:6419–6422.

[24] Nasseri AT, Rasoul-Amini S, Morowvat MH, Ghasemi Y. Single cell protein: production and process. American Journal of Food Technology. 2011;6(Suppl 2):103–116.

[25] Raman J, Jang KY, Oh YL, Oh M, Im JH, Lakshmanan H, et al. Cultivation and nutritional value of pro-minent Pleurotus spp.: An overview. Mycobiology. 2020 Nov;49(1):1–14.

[26] Rizvi NB, Aleem S, Khan MR, Ashraf S, Busquets R. Quantitative estimation of protein in sprouts of vigna radiate (Mung Beans), lens culinaris (Lentils), and cicer arietinum (Chickpeas) by Kjeldahl and Lowry Met-hods. Molecules. 2022 Jan;27(3):814.

[27] Sánchez C. Cultivation of Pleurotus ostreatus and other edible mushrooms. Applied Microbiology and Bio-technology. 2010 Feb;85(5):1321–1337.

[28] Selim AS, Hasan MN, Rahman MA, Rahman MM, Islam MR, Bostami AB, et al. Nutrient content and in vitro degradation study of some unconventional feed resources of Bangladesh. Heliyon. 2022 May;8(5):e09496.

Download
HTML
Cite
Share
statistics

278 Abstract Views

159 PDF Downloads