ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M.

ISSN: 2789-5009

Leading Ecuadorian research in science, technology, engineering, arts, and mathematics.

Quality Analysis of Atmospheric Deposits in Networks with Intermittent Service

Published date: Aug 31 2022

Journal Title: ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M.

Issue title: Volume 2, Issue 4

Pages: 1078–1095

DOI: 10.18502/espoch.v2i4.11739

Authors:

Daniel Chuquindaniel.chuquin@espoch.edu.ecEscuela Superior Politécnica de Chimborazo, Facultad de Ciencias, Carrera de Ingeniería Química, Ecuador

Gloria MiñoEscuela Superior Politécnica de Chimborazo, Facultad de Mecánica, Ecuador

Juan ChuquinEscuela Superior Politécnica de Chimborazo, Facultad de Mecánica, Ecuador

Santiago ChuquinEscuela Superior Politécnica de Chimborazo, Facultad de Mecánica, Ecuador

Abstract:

In Latin America, the installation of atmospheric reservoirs is frequent due to various policies related to water availability and management. This type of infrastructure, in addition to modifying the hydraulic behavior of the network, significantly alters water quality, conditioning its microbiological characteristics and exposing the user to health problems. The hydraulic characterization of reservoirs has been widely approached in terms how their filling/emptying cycles are reproduced; however, several factors have not been taken into account – those which modify the disinfectant concentrations in the reservoirs, either improving or impairing the water quality. In the present work, the Epanet Toolkit model is developed and applied to analyze loss in the quality of the water in the tanks as an effect of chlorine concentrations available in the main network and based on different intradomiciliary hydraulic peculiarities such as the change in the pattern of demands, the variation of the regulation volume, the operation of the valve that controls the level in the cisterns, among others.

Keywords: atmospheric deposits, water quality, intermittent networks.

Resumen

En América Latina es frecuente por diversas políticas referentes a la disponibilidad y gestión del agua, la instalación de depósitos atmosféricos. Este tipo de infraestructuras, además de modificar el comportamiento hidráulico de la red, alteran significativamente la calidad del agua condicionado sus características microbiológicas y exponiendo al usuario a problemas de salubridad. La caracterización hidráulica de los depósitos ha sido ampliamente abordada desde el punto de vista de la forma en la cual se reproducen sus ciclos de llenado/vaciado, sin embargo, no han tenido en cuenta diversos factores que modifican las concentraciones de desinfectante en los depósitos, ya sea que promuevan un post mejoramiento o un empobrecimiento de esta, en términos de calidad. En el presente trabajo, se desarrolla aplica el modelo del Toolkit de Epanet para analizar la pérdida de calidad del agua en los depósitos en función de las condiciones de concentración de cloro disponible en la red principal y en base a distintas peculiaridades hidráulicas intradomiciliarias como son el cambio en el patrón de demandas, la variación del volumen de regulación, la forma de operación de la válvula que controla el nivel en las cisternas, entre otras.

Palabras Clave: depósitos atmosféricos, calidad del agua, redes intermitentes.

References:

[1] Nelson KL, Perroni EA, Buss S. Suministro intermitente en el contexto de esfuerzos por mejorar el abastecimiento de agua potable en América Latina y el Caribe Suministro intermitente en el contexto de esfuerzos por mejorar el abastecimiento de agua potable en América Latina y el Caribe [Internet]. 2017 [cited 2018 Feb 16]. Available from: https://publications.iadb.org/bitstream/handle/11319/8027/Suministro-intermitenteen- el-contexto-de-esfuerzos-por-mejorar-el-abastecimiento-de-agua-potableen- America-Latina-y-el-Caribe-Lecciones-de-un-estudio-de-caso-en-Arraijan- Panama.pdf?sequence=2

[2] Cobacho R, Arregui F, Cabrera E, Jr EC. Private water storage tanks: Evaluating their inefficiencies. Water Practice & Technology. 2008 [cited 2017 Nov 29];3(1). Available from: http://www.ita.upv.es/idi/descargaarticulo.php?id=173

[3] Criminisi A, Fontanazza CM, Freni G, La Loggia G. Evaluation of the apparent losses caused by water meter under-registration in intermittent water supply. Water Science and Technology. 2009;60(9):2373–2382.

[4] De Marchis M, Fontanazza CM, Freni G, La Loggia G, Napoli E, Notaro V. Modeling of distribution network filling process during intermittent supply. In: Integrating Water Systems - Proceedings of the 10th International on Computing and Control for the Water Industry, CCWI 2009 [Internet]; 2009 Sep 1–3; Sheffield, UK. Boca Raton, FL: CRC Press; 2010; p. 189–194.

[5] Kruger E. Water quality deterioration in potable water reservoirs relative to chlorine decay. South Africa: Water Research Commission; 2001. 78 p. Report No.: 921/1/01. Available from: https://www.wrc.org.za/wp-content/uploads/mdocs/921-1-01.pdf

[6] Erickson JJ, Smith CD, Goodridge A, Nelson KL. Water quality effects of intermittent water supply in Arraij an, Panama. Water Research. 2017;114:338–350.

[7] Mohamed HI, Gad AAM. Effect of cold-water storage cisterns on drinking-water quality. Journal of Water Resources Planning and Management. 2011;137(5):448– 455.

[8] Fontanazza CM, Freni G, La Loggia G. Analysis of intermittent supply systems in water scarcity conditions and evaluation of the resource distribution equity indices. WIT Transactions on Ecology and the Environment. 2007;103:635–644.

[9] De Marchis M, Fontanazza CM, Freni G, La Loggia G, Napoli E, Notaro V. Analysis of the impact of intermittent distribution by modelling the network-filling process. Journal of Hydroinformatics [Internet]. 2011 [cited 2017 Nov 27];13(3):358. Available from: https://iris.unipa.it/retrieve/handle/10447/76190/77924/2010 - Hydroinformatics.pdf

[10] De Marchis M, Fontanazza CM, Freni G, La Loggia G, Notaro V, Puleo V. A mathematical model to evaluate apparent losses due to meter under-registration in intermittent water distribution networks. Water Science and Technology: Water Supply. 2013;13(4):914–923.

[11] Puleo V, Milici B. Water losses dynamic modelling in water distribution networks. AIP Conference Proceedings [Internet]. 2015 [cited 2018 Apr 10];1702(180004). Available from: https://doi.org/10.1063/1.4938953

[12] Basile N, Fuamba M, Barbeau B. Water Distribution Systems Analysis 2008 [Internet]. Reston, VA: American Society of Civil Engineers; 2009. Optimization of water tank design and location in water distribution systems. [cited 2017 Nov 29]. p. 1–13. Available from: http://ascelibrary.org/doi/10.1061/41024%28340%2932

[13] Clark RM, Rossman LA, Wymer LJ. Modeling distribution system water quality: Regulatory implications. Journal of Water Resources Planning and Management [Internet]. 1995 [cited 2017 Nov 29];121(6):423– 428. Available from: http://ascelibrary.org/doi/10.1061/%28ASCE%290733- 9496%281995%29121%3A6%28423%29

[14] Lemke A, DeBoer DE. Effect of storage tank mixing on water quality. Brookings, SD: Water and Environmental Engineering Research Center, South Dakota State University; 2012.

[15] Evison L, Sunna N. Microbial regrowth in household water storage tanks. Journal AWWA. 2001; September:85–94.

[16] Jensen PK, Ensink JHJ, Jayasinghe G, van der Hoek W, Cairncross S, Dalsgaard A. Domestic transmission routes of pathogens: The problem of in-house contamination of drinking water during storage in developing countries. Tropical Medicine & International Health [Internet]. 2002 [cited 2018 Mar 16];7(7):604–509. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12100444

[17] Schafer CA, Mihelcic JR. Effect of storage tank material and maintenance on household water quality. Journal AWWA. 2012;104(9):49–50.

[18] Alexandra D, Renwick V. The effects of an intermittent piped water network and storage practices on household water quality in Tamale, Ghana [Internet]. Cambridge, MA: Massachusetts Institute of Technology; 2013 [cited 2017 Nov 27]. Available from: http://web.mit.edu/watsan/Docs/Student Theses/Ghana/2013/Thesis_D_Vacs_Renwick_FINAL_5-31-13.pdf

[19] Hernandez-Lopez RD, Tzatchkov VG, Martin-Dominguez A, Alcocer-Yamanaka VH. Study of hydraulics and mixing in roof tanks used in intermittent water supply. Journal of Water, Sanitation and Hygiene for Development [Internet]. 2016;6(4):547–554. Available from: http://washdev.iwaponline.com/cgi/doi/10.2166/washdev.2016.147

[20] Kordach A, Chardwattananon C, Wongin K, Chayaput B, Wongpat N. Evaluation on the quality of Bangkok tap water with other drinking purpose water. The First Conference of the International Water Association IWA for Young Scientist in Poland “Water, Wastewater and Energy in Smart Cities” [Internet]; Cimochowicz-Rybicka M, editor. 2018 Feb 6 [cited 2018 Mar 20];30:01011. Available from: https://www.e3sconferences. org/10.1051/e3sconf/20183001011

[21] Rossman LA. The effect of advanced treatment on chlorine decay in metallic pipes. Water Research. 2006 [cited 2018 Jan 11];40(13):2493– 2502. Available from: https://ac.els-cdn.com/S0043135406002788/1- s2.0-S0043135406002788-main.pdf?_tid=7adf3ac4-f6a8-11e7-8115- 00000aab0f01&acdnat=1515659094_28664087628f229b1b2ee975a58978fd

[22] Monteiro L, Viegas RMC, Covas DIC, Menaia J. Modelling chlorine residual decay as influenced by temperature. Water and Environment Journal. 2015;29(3):331–337.

[23] Mastaller M, Klingel P. Adapting the IWA water balance to intermittent water supply and flat-rate tariffs without customer metering. J Water Sanit Hyg Dev [Internet]. 2017;7(3):396–406. Available from: http://washdev.iwaponline.com/lookup/doi/10.2166/washdev.2017.1163516846

Download
HTML
Cite
Share
statistics

251 Abstract Views

151 PDF Downloads