ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M.

ISSN: 2789-5009

Leading Ecuadorian research in science, technology, engineering, arts, and mathematics.

Bovine in vitro Embryo Production: State of the Art

Published date: Jun 14 2022

Journal Title: ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M.

Issue title: Volume 2, Issue 1

Pages: 172 - 185

DOI: 10.18502/espoch.v2i2.11192

Authors:

F. GallegoTADEC (Técnicos Agropecuarios del Ecuador), Gerencia en Ventas, Ambato, Ecuador

A. ManchenoCarrera de Zootecnia, Facultad de Ciencias Pecuarias, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador

L. MenaCarrera de Medicina Veterinaria, Facultad de Ciencias Pecuarias, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador

A. Murilloantonio.murillo@espoch.edu.ecCarrera de Medicina Veterinaria, Facultad de Ciencias Pecuarias, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador

Abstract:

In the last 10 years, bovine in vitro embryo production has shown significant progress on a global level, partly driven by a better understanding of technology potential in the livestock sector. Importantly, in 2016, the number of viable bovine embryos produced in vitro exceeded the number of transferable embryos derived in vivo (multiple ovulation embryo transfer, MOET). In vitro embryo production (PIVE) requires the correct formulation of culture media to allow the development of oocytes and embryos. In cattle, the PIVE process includes three sequential processes in vitro: maturation of oocytes, fertilization of matured oocytes, and culture of fertilized oocytes to obtain embryo development of blastocyst. In vitro-produced blastocysts can be transferred fresh to synchronized recipients or be cryopreserved (vitrified or frozen) for later transfer or commercialization. These assisted reproduction techniques have demonstrated acceptable outcomes in livestock, helping technicians and farmers to improve reproductive performance, production efficiency, and genetic progress.

Keywords: bovine, in vitro, embryo, reproduction, technology.

RESUMEN

En los últimos 10 años, la producción de embriones bovinos in vitro ha mostrado un progreso significativo a escala mundial, en parte impulsado por una mejor comprensión del potencial de esta tecnología en el sector ganadero. Es importante destacar que en 2016, el número de embriones bovinos viables producidos in vitro superó al número de embriones transferibles producidos in vivo (transferencia de embriones de ovulación múltiple, MOET). La producción in vitro de embriones (PIVE) requiere la formulación correcta de medios de cultivo que permitan el desarrollo de ovocitos y embriones. En bovinos, el proceso de PIVE incluye tres procesos secuenciales in vitro: la maduración de ovocitos, la fecundación de los ovocitos madurados y el cultivo de cigotos hasta alcanzar el desarrollo embrionario de blastocisto. Los blastocistos producidos in vitro pueden ser transferidos en fresco a receptoras sincronizadas o pueden ser criopreservados (vitrificados o congelados) para su posterior transferencia o comercialización. Estas técnicas de reproducción asistida han sido probadas con éxito en el campo comercial, ayudando a técnicos y productores de ganado bovino a mejorar el desempeño reproductivo, la eficiencia productiva y la mejora genética.

Palabras Clave: bovino, in vitro, embrión, reproducción, tecnología.

References:

[1] Viana J. 2018 statistics of embryo production and transfer in domestic farm animals. In Embryo Technology Newsletter. 2019;36(4): 8-25: http://www.iets.org/comm_data.asp.

[2] Hasler JF. The current status and future of commercial embryo transfer in cattle. Animal Reproduction Science. 2003;79:245-64.

[3] Mikkola M, Taponen J. Embryo yield in dairy cattle after superovulation with Folltropin or Pluset. Theriogenology. 2017;88:84-88.

[4] Ríos AV. Sistema de cultivo para mejorar la viabilidad de embriones bovinos producidos in vitro [Doctoral dissertation]. Universitat Politècnica de València, España; 2018.

[5] Murillo A, Muñoz M, Martín-Gonzalez D, Carrocera S, Martínez-Nistal A, Gomez E. Low serum concentration in bovine embryo culture enhances early blastocyst rates on Day-6 with quality traits in the expanded blastocyst stage similar to BSA-cultured embryos. Reproductive biology 2017;17(2):162e71.

[6] Merton JS, de Roos AP, Mollaart E et al. Factors affecting oocyte quality and quantity in commercial application of embryo technologies in the cattle breeding industry. Theriogenology. 2003;59:651-674

[7] Galli C, Duchi R, Crotti G, et al. Bovine embryo technologies. Theriogenology. 2003;59:599-616.

[8] Rizos D, Lonergan P, Boland MP, Arroyo-Garcia R, Pintado B, de la Fuente J, Gutierrez-Adan A. Analysis of differential messenger RNA expression between bovine blastocysts produced in different culture systems: implications for blastocyst quality. Biology of reproduction 2002. 66:589–595.

[9] Fleming TP, Velázquez MA, Eckert JJ. Embryos, DOHaD and David Barker. Journal of Developmental Origins of Health and Disease 2015;6(5):377–383.

[10] Hansen PJ. Developmental programming in the preimplantation period: can it be exploited to enhance postnatal function in cattle?. Animal Reproduction. 2015;12:428-436.

[11] Duranthon V, Chavatte-Palmer P. Long term effects of ART: What do animals tell us? Molecular Reproduction and Development 2018;85(4):348-368.

[12] Bols PE, Leroy JLMR, Viana JHM. Technical and biological aspects of ultrasoundguided transvaginal oocyte retrieval in the cow: an overview. Acta Scientiae Veterinariae. 2005;(1)103–108.

[13] de Loos F, van Vliet C, van Maurik P, Kruip TA. Morphology of immature bovine oocytes. Gamete Research. 1989;24:197–204.

[14] Hasler JF. The current status of oocyte recovery, in vitro embryo production, and embryo transfer in domestic animals, with an emphasis on the Bovine. Journal of Animal Science. 1998;76:52–74.

[15] Vieira LM, Rodrigues CA, Netto A et al. Efficacy of a single intramuscular injection of porcine FSH in hyaluronan prior to ovum pick-up in Holstein cattle. Theriogenology. 2016;85:877–886.

[16] Fernandes CAC, Miyauchi TM, Figueiredo ACS et al. Hormonal protocols for in vitro production of Zebu and taurine embryos. Pesquisa Agropecuária Brasileira. 2014;49:813–817.

[17] Cavalieri FLB, Morotti F, Seneda MM et al. Improvement of bovine in vitro embryo production by ovarian follicular wave synchronization prior to ovum pickup. Theriogenology. 2017;117:57–60.

[18] Sendag S, Cetin Y, Alan M, Hadeler K-G, Niemann H. Effects of eCG and FSH on ovarian response, recovery rate and number and quality of oocytes obtained by ovum pick-up in Holstein cows. Animal Reproduction Science. 2008;106:208–214.

[19] Nivet AL, Bunel A, Labrecque R et al. FSH withdrawal improves developmental competence of oocytes in the bovine model. Reproduction. 2012;143:165–171.

[20] Dunning KR, Russell DL, Robker RL. Lipids and oocyte developmental competence: The role of fatty acids and β-oxidation. Reproduction. 2014;148:R15–R27.

[21] Ferreira EM, Vireque AA, Adona PR, Meirelles FV, Ferriani RA, Navarro PA. Cytoplasmic maturation of bovine oocytes: structural and biochemical modifications and acquisition of developmental competence. Theriogenology. 2009;71(5):836-48.

[22] Watson AJ. Oocyte cytoplasmic maturation: A key mediator of oocyte and embryo developmental competence. Journal of Animal Science. 2007;85(13):E1–E3.

[23] Sirard MA. Resumption of meiosis: mechanism involved in meiotic progression and its relation with developmental competence. Theriogenology. 2001;55:1241–1254.

[24] Gilchrist RB, Ritter LJ, Armstrong DT. Oocyte–somatic cell interactions during follicle development in mammals. Animal Reproduction Science. 2004;82–83:431–446.

[25] Luciano AM, Sirard MA. Successful in vitro maturation of oocytes: A matter of follicular differentiation. Biology of reproduction. 2018;98(2):162-169.

[26] Mermillod P, Oussaid B and Cognie Y. Aspects of follicular and oocyte maturation that affect the developmental potential of embryos. Journal of Reproduction and Fertility. 1999;54:449–460.

[27] Mermillod P, Locatelli Y, Dalbies-Tran R et al. In vitro production of ruminant embryos: results, limits and perspectives. Symposium COA/INRA Scientific Cooperation in Agriculture; Tainan, Taiwan. December, 2006

[28] Parrish JJ, Susko-Parrish JL, Leibfried-Rutledge ML, Critser ES, Eyestone WH, First NL. Bovine in vitro fertilization with frozen-thawed semen. Theriogenology. 1986;25(4):591-600.

[29] Saeki K, Hoshi M, Leibfried-Rutledge ML, First NL. In vitro fertilization and development of bovine oocytes matured in serum-free medium. Biology of reproduction. 1991;44:256-260.

[30] Ward F, Enright B, Rizos D, Boland M and Lonergan P. Optimization of in vitro bovine embryo production: effect of duration of maturation, length of gamete co-incubation, sperm concentration and sire. Theriogenology. 2002;57:2105–2117.

[31] de Graaf SP, Evans G, Maxwell WM, Cran DG and O’Brien JK. Birth of offspring of pre-determined sex after artificial insemination of frozen-thawed, sex sorted and re-frozen-thawed ram spermatozoa. Theriogenology, 2007;67:391–398.

[32] Morotti F, Sanches BV, Pontes JHF et al. Pregnancy rate and birth rate of calves from a large scale IVF program using reverse-sorted semen in Bos indicus, Bos indicus-taurus, and Bos taurus cattle. Theriogenology. 2014;81:696-701.

[33] Graf A, Krebs S, Heininen-Brown M et al. Genome activation in bovine embryos: review of the literature and new insights from RNA sequencing experiments. Animal Reproduction Science. 2014;149:46-58.

[34] Rodriguez-Zas SL, Schellander K, Lewin HA. Biological interpretations of transcriptomic profiles in mammalian oocytes and embryos. Reproduction. 2008;135(2):129- 139.

[35] Wang H, Dey SK. Roadmap to embryo implantation: Clues from mouse models. Nature Reviews Genetics. 2006;7:185-99.

[36] Tervit HR, Whittingham DG, Rowson LE. Successful culture in vitro of sheep and cattle ova. Journal of Reproduction and Fertility. 1972;30:493–497.

[37] Holm P, Booth PJ, Schmidt MH, Greve T, Callesen H. High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins. Theriogenology. 1999;52:683–700.

[38] Pinyopummintr T, Bavister BD. Development of bovine embryos in a cell-free medium: effects of type of serum, timing of its inclusion and heat inactivation. Theriogenology. 1994;41:1241–9.

[39] Thompson JG, Sherman ANM, Allen NW, McGowan LT, Tervit HR. Total protein content and protein synthesis within pre-elongation stage bovine embryos. Molecular Reproduction and Development: Incorporating Gamete Research. 1998;50(2):139- 145.

[40] Gómez E, Diez C. Effects of glucose and protein sources on bovine embryo development in vitro. Animal Reproduction Science. 2000;58:23-37.

[41] Holm P, Booth PJ, Callesen H. Kinetics of early in vitro development of bovine in vivo-and in vitro-derived zygotes produced and/or cultured in chemically defined or serum-containing media. Reproduction. 2002;123:553–65.

[42] Heras S, De Coninck DI, Van Poucke M et al. Suboptimal culture conditions induce more deviations in gene expression in male than female bovine blastocysts. BMC genomics. 2016;17(1):72.

[43] Abe H, Yamashita S, Satoh T, Hoshi H. Accumulation of cytoplasmic lipid droplets in bovine embryos and cryotolerance of embryos developed in different culture systems using serum-free or serum-containing media. Molecular reproduction and development 2002;61(1):57-66.

[44] Rizos D, Gutierrez-Adan A, Perez-Garnelo S, De La Fuente J, Boland MP, Lonergan P. Bovine embryo culture in the presence or absence of serum: implication for blastocysts development, cryotolerance, and messenger RNA expression. Biology of reproduction. 2003;68:236–43.

[45] Gómez E, Rodríguez A, Muñoz M et al. Serum free embryo culture medium improves in vitro survival of bovine blastocysts to vitrification. Theriogenology. 2008;69(8):1013-1021.

[46] Sudano MJ, Paschoal DM, Rascado TS et al. Lipid content and apoptosis of in vitro-produced bovine embryos as determinants of susceptibility to vitrification. Theriogenology. 2011;75:1211– 20.

[47] Farin PW, Crosier AE, Farin CE. Influence of in vitro systems on embryo survival and fetal development in cattle. Theriogenology. 2001;55(1):151-170.

[48] Lazzari G, Wrenzycki C, Herrmann D et al. Cellular and molecular deviations in bovine in vitro produced embryos are related to the large offspring syndrome. Biology of reproduction. 2002;67:767–75.

[49] Stroebech L, Mazzoni G, Pedersen HS et al. In vitro production of bovine embryos: revisiting oocyte development and application of systems biology. Animal Reproduction. 2015;12:465–472.

[50] Sanches BV, Lunardelli PA, Tannura JH et al. A new direct transfer protocol for cryopreserved IVF embryos. Theriogenology. 2016;85:1147–1151.

[51] Dode MAN, Leme LO, Spricigo JFW. Criopreservação de embriões bovinos produzidos in vitro. Embrapa Recursos Genéticos e Biotecnologia-Artigo em periódico indexado 2013;37:145-50.

[52] Vajta G, Holm P, Kuwayama M et al. Open Pulled Straw (OPS) vitrification: A new way to reduce cryoinjuries of bovine ova and 336 embryos. Molecular reproduction and development. 1998;51:53–8.

[53] Voelkel SA, Hu YX. Direct transfer of frozen-thawed bovine embryos. Theriogenology. 1992;37:23-37.

[54] Gómez E, Carrocera S, Martín D et al. Efficient one-step direct transfer to recipients of thawed bovine embryos cultured in vitro and frozen in chemically defined medium. Theriogenology. 2020;146:39-47.

Download
HTML
Cite
Share
statistics

1673 Abstract Views

1246 PDF Downloads