Dubai Medical Journal

ISSN: 2571-726X

Pioneering research in medicine, health sciences, nursing, pharmaceuticals, and laboratory work

Maternal Gestational Diabetes and Autism Spectrum Disorder in Offspring: Risk Factors, Mechanisms, and Pediatric Implications

Published date: Jun 30 2025

Journal Title: Dubai Medical Journal

Issue title: Dubai Medical Journal (DMJ): Volume 8, Issue 2

Pages: 230 - 249

DOI: 10.18502/dmj.v8i2.19010

Authors:

Rasha MaryamCollege of Medicine, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah

Zyna FayazCollege of Medicine, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah

Nafila MusthafaCollege of Medicine, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah

Jasna Abdul JaleelCollege of Medicine, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah

Shadha Nasser Mohammed Bahutairshadhabahutair@gmail.comDepartment of Obstetrics and Gynecology, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah

Rasha Aziz Attia SalamaDepartment of Community Medicine, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah

Mohamed Anas PatniDepartment of Community Medicine, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah

Abstract:

Introduction: Gestational diabetes (GDM) complicates around 14% of pregnancies globally. While GDM’s physiological effects are often transient, its long-lasting effects on the mother and the child are significant. Studies show a heightened chance of autism occurring in offspring subjected to gestational diabetes in utero.

Methods: A thorough search of literature was performed across PubMed, SCOPUS, and ProQuest, identifying 35 relevant studies published between 2012 and 2024. This review focuses on exploring the impact of GDM on the offspring’s chances of developing autism. It aims to explore the factors influencing this relationship, such as the timing of GDM onset, the presence of coexisting complications, and the condition’s underlying mechanisms.

Results: The findings demonstrate that gestational diabetes can significantly increase the risk of autism. Key factors influencing this relationship include the timing of diagnosis, maternal glucose management, and treatment strategies during pregnancy. Potential mechanisms include increased fetal exposure to inflammation, oxidative stress, and immune dysregulation.

Conclusion: The findings highlight the importance of early and effective GDM management and its pediatric implications for improving neurodevelopmental outcomes in offspring during early childhood.

Keywords: autistic spectrum disorder (ASD), endocrinology, gestational diabetes (GDM), neurodevelopmental disorders (NDD), psychiatry

References:

[1] Xiang AH, Wang X, Martinez MP, Page K, Buchanan TA, Feldman RK. Maternal type 1 diabetes and risk of autism in offspring. JAMA (Internet). 2018;320(1):89–91. doi:10.1001/jama.2018.7614

[2] Zeidan J, Fombonne E, Scorah J, Ibrahim A, Durkin MS, Saxena S, et al. Global prevalence of autism: A systematic review update. Autism Res. 2022 May;15(5):778–790. https://doi.org/10.1002/aur.2696 PMID:35238171

[3] Posar A, Visconti P. Long-term outcome of autism spectrum disorder. Turkish Archives of Pediatrics. 2019;54(4):207–212. https://doi.org/10.14744/TurkPediatriArs.2019.16768

[4] Wang H, Li N, Chivese T, Werfalli M, Sun H, Yuen L, et al.; IDF Diabetes Atlas Committee Hyperglycaemia in Pregnancy Special Interest Group. IDF diabetes atlas: Estimation of global and regional gestational diabetes mellitus prevalence for 2021 by international association of diabetes in pregnancy study group’s criteria. Diabetes Res Clin Pract. 2022 Jan;183:109050. https://doi.org/10.1016/j.diabres.2021.109050 PMID:34883186

[5] Sharma AK, Singh S, Singh H, Mahajan D, Kolli P, Mandadapu G, et al. Deep insight of the pathophysiology of gestational diabetes mellitus. Cells. 2022 Aug;11(17):2672. https://doi.org/10.3390/cells11172672 PMID:36078079

[6] Nomura Y, Marks DJ, Grossman B, Yoon M, Loudon H, Stone J, et al. Exposure to gestational diabetes mellitus and low socioeconomic status: Effects on neurocognitive development and risk of attention-deficit/hyperactivity disorder in offspring. Arch Pediatr Adolesc Med. 2012 Apr;166(4):337– 343. https://doi.org/10.1001/archpediatrics.2011.784 PMID:22213602

[7] Kong L, Nilsson IA, Brismar K, Gissler M, Lavebratt C. Associations of different types of maternal diabetes and body mass index with offspring psychiatric disorders. JAMA Netw Open. 2020;3(2):e1920787. doi:10.1001/jamanetworkopen.2019.20787

[8] Rowland J, Wilson CA. The association between gestational diabetes and ASD and ADHD: A systematic review and meta-analysis. Sci Rep. 2021;11:5136. https://doi.org/10.1038/s41598-021-84573-3

[9] Xu G, Jing J, Bowers K, Liu B, Bao W. Maternal diabetes and the risk of autism spectrum disorders in the offspring: A systematic review and meta-analysis. J Autism Dev Disord. 2014 Apr;44(4):766–775. https://doi.org/10.1007/s10803-013-1928-2 PMID:24057131

[10] Liu X, Zhu Y, Seamans M, Nianogo R, Janzen C, Fei Z, et al. Gestational diabetes mellitus and risk of neurodevelopmental disorders in young offspring: Does the risk differ by race and ethnicity? Am J Obstet Gynecol MFM. 2024 Jan;6(1):101217. https://doi.org/10.1016/j.ajogmf.2023.101217 PMID:37940104

[11] Vui LT, Duc DM, Quynh CTT, Tuan DK, Huong NM, Thanh NTM, et al. Ante-, peri-, and neonatal factors associated with autism spectrum disorders in Vietnam: A population-based cross-sectional survey. Iran J Public Health. 2023;52(5):950–959. 10.18502/ijph.v52i5.12711 PMC10362219

[12] Chen KR, Yu T, Lien YJ, Chou YY, Kuo PL. Childhood neurodevelopmental disorders and maternal diabetes: A population-based cohort study. Dev Med Child Neurol. 2023 Jul;65(7):933–941. https://doi.org/10.1111/dmcn.15488 PMID:36541040

[13] Cordero C, Windham GC, Schieve LA, Fallin MD, Croen LA, Siega-Riz AM, et al. Maternal diabetes and hypertensive disorders in association with autism spectrum disorder. Autism Res. 2019;12(6):967–975. https://doi.org/10.1002/aur.2105

[14] Chen S, Persson M, Wang R, Dalman C, Lee BK, Karlsson H, et al. Random capillary glucose levels throughout pregnancy, obstetric and neonatal outcomes, and long-term neurodevelopmental conditions in children: A group-based trajectory analysis. BMC Med. 2023;21:260. https://doi.org/10.1186/s12916-023-02926-3

[15] Xiang AH, Wang X, Martinez MP, Page K, Buchanan TA, Feldman RK. Maternal type 1 diabetes and risk of autism in offspring. JAMA. 2018 Jul;320(1):89–91. https://doi.org/10.1001/jama.2018.7614 PMID:29936530

[16] Carpita B, Muti D, Dell’Osso L. Oxidative stress, maternal diabetes, and autism spectrum disorders. Oxid Med Cell Longev. 2018;3717215. https://doi.org/10.1155/2018/3717215

[17] Van Dam JM, Garrett AJ, Schneider LA, Hodyl NA, Goldsworthy MR, Coat S, et al. Reduced cortical excitability, neuroplasticity, and salivary cortisol in 11–13-year-old children born to women with gestational diabetes mellitus. EbioMedicine. 2018;31:143–149. https://doi.org/10.1016/j.ebiom.2018.04.011 PMID: 29709497

[18] Howe CG, Cox B, Fore R, Jungius J, Kvist T, Lent S, et al. Maternal gestational diabetes mellitus and newborn DNA methylation: Findings from the pregnancy and childhood epigenetics consortium. Diabetes Care. 2020 Jan;43(1):98–105. https://doi.org/10.2337/dc19-0524 PMID:31601636

[19] Beopoulos A, Géa M, Fasano A, Iris F. Autism spectrum disorders pathogenesis: Toward a comprehensive model based on neuroanatomic and neurodevelopment considerations. Front Neurosci. 2022 Nov;16:988735. https://doi.org/10.3389/fnins.2022.988735 PMID:36408388

[20] Randall M, Egberts KJ, Samtani A, Scholten RJ, Hooft L, Livingstone N, et al. Diagnostic tests for autism spectrum disorder (ASD) in preschool children. Cochrane Database Syst Rev. 2018 Jul;7(7):CD009044. https://doi.org/10.1002/14651858.CD009044.pub2 PMID:30075057

[21] Krakowiak P, Walker CK, Tancredi D, Hertz-Picciotto I, Van de Water J. Autism-specific maternal anti-fetal brain autoantibodies are associated with metabolic conditions. Autism Res. 2017;10:89–98. https://doi.org/10.1002/aur.1657

[22] Chen S, Zhao S, Dalman C, Karlsson H, Gardner R. Association of maternal diabetes with neurodevelopmental disorders: Autism spectrum disorders, attention-deficit/hyperactivity disorder and intellectual disability. Int J Epidemiol. 2021 May;50(2):459–474. https://doi.org/10.1093/ije/dyaa212 PMID:33221916

[23] Rose’Meyer R. A review of the serotonin transporter and prenatal cortisol in the development of autism spectrum disorders. Mol Autism. 2013;4:37. https://doi.org/10.1186/2040-2392-4-37

[24] Connolly N, Anixt J, Manning P, Ping-I Lin D, Marsolo KA, Bowers K. Ping-I Lin D, Marsolo KA, Bowers K. Maternal metabolic risk factors for autism spectrum disorder—An analysis of electronic medical records and linked birth data. Autism Res. 2016 Aug;9(8):829–837. https://doi.org/10.1002/aur.1586 PMID:26824581

[25] Wan H, Zhang C, Li H, Luan S, Liu C. Association of maternal diabetes with autism spectrum disorders in offspring: A systemic review and meta-analysis. Medicine. 2018 Jan;97(2):e9438. https://doi.org/10.1097/MD.0000000000009438.

[26] Liu X, Guo C, Zou MY, Feng FM, Liang SM, Chen WX, et al. Association between maternal gestational diabetes mellitus and the risk of autism spectrum disorder in offspring. Chinese J Cont Ped. 2023;25(8):818–823. doi:10.7499/j.issn.1008-8830.2301021 PMID: 37668029

[27] Li M, Fallin MD, Riley A, Landa R, Walker SO, Silverstein M, et al. The association of maternal obesity and diabetes with autism and other developmental disabilities. Pediatrics. 2016;137(2):e20152206. https://doi.org/10.1542/peds.2015-2206.

[28] Ornoy A, Reece EA, Pavlinkova G, Kappen C, Miller RK. Effect of maternal diabetes on the embryo, fetus, and children: Congenital anomalies, genetic and epigenetic changes and developmental outcomes. Birth Defects Res C. 2015;105(1):53–72. https://doi.org/10.1002/bdrc.21090

[29] Chien YL, Chou MC, Chou WJ, Wu YY, Tsai WC, Chiu YN, et al. Prenatal and perinatal risk factors and the clinical implications on autism spectrum disorder. Autism. 2019;23(3):783–791. https://doi.org/10.1177/1362361318772813

[30] Zhu B, Deng F, Yan S, Huang K, Wu X, Tao X, et al. Gestational diabetes mellitus, autistic traits and ADHD symptoms in toddlers: Placental inflammatory and oxidative stress cytokines do not play an intermediary role. Psychoneuroendocrinology. 2021 Oct;134:105435. https://doi.org/10.1016/j.psyneuen.2021.105435 PMID:34649104

[31] Nogueira Avelar e Silva R, Yu Y, Liew Z, Vested A, Sørensen HT, Li J. Associations of maternal diabetes during pregnancy with psychiatric disorders in offspring during the first 4 decades of life in a population-based Danish birth cohort. JAMA Netw Open. 2021;4(10):e2128005 https://doi.org/10.1001/jamanetworkopen.2021.28005

[32] Nahum Sacks K, Friger M, Shoham-Vardi I, Abokaf H, Spiegel E, Sergienko R, et al. Prenatal exposure to gestational diabetes mellitus as an independent risk factor for long-term neuropsychiatric morbidity of the offspring. Am J Obstet Gynecol. 2016 Sep;215(3):380.e1–380.e7. https://doi.org/10.1016/j.ajog.2016.03.030 PMID:27018463

[33] Moussa HN, Srikrishnan A, Blackwell SC, Dash P, Sibai BM. Fetal origins of autism spectrum disorders: The non-associated maternal factors. Future Sci OA. 2016;2(2). https://doi.org/10.4155/fsoa-2015-0001.

[34] Yang G, Cancino GI, Zahr SK, Guskjolen A, Voronova A, Gallagher D, et al. A glo1-methylglyoxal pathway that is perturbed in maternal diabetes regulates embryonic and adult neural stem cell pools in murine offspring. Cell Rep. 2016;17(4):1022–1036. https://doi.org/10.1016/j.celrep.2016.09.067.

[35] Aviel-Shekler K, Hamshawi Y, Sirhan W, Getselter D, Srikanth KD, Malka A, et al. Gestational diabetes induces behavioral and brain gene transcription dysregulation in adult offspring. Transl Psychiatry. 2020;10:412. https://doi.org/10.1038/s41398-020-01096-7

[36] Lyall K, Pauls DL, Spiegelman D, Ascherio A, Santangelo SL. Pregnancy complications and obstetric suboptimality in association with autism spectrum disorders in children of the nurses’ health study II. Autism Res. 2012;5:21–30. https://doi.org/10.1002/aur.228

[37] Ingelfinger Julie R. Prematurity and the Legacy of Intrauterine Stress. N Engl J Med. 2007;356(20): 2093-2095. https://doi.org/10.1056/NEJMe078071

[38] Angelidou A, Asadi S, Alysandratos KD, Karagkouni A, Kourembanas S, Theoharides TC. Perinatal stress, brain inflammation and risk of autism—Review and proposal. BMC Pediatr. 2012;89. https://doi.org/10.1186/1471-2431-12-89

[39] Sajdel-Sulkowska EM, Xu M, McGinnis W, Koibuchi N. Brain region-specific changes in oxidative stress and neurotrophin levels in autism spectrum disorders (ASD). Cerebellum. 2011 Mar;10(1):43–48. https://doi.org/10.1007/s12311-010-0223-4 PMID:20967576

[40] Sajdel-Sulkowska EM, Lipinski B, Windom H, Audhya T, Mcginnis W. Oxidative stress in autism: Elevated cerebellar 3-nitrotyrosine levels 1, 2. Am J Biochem Biotechnol. 2008;4(2):73–84. https://doi.org/10.3844/ajbbsp.2008.73.84

[41] Sousa Silva M, Gomes RA, Ferreira AE, Ponces Freire A, Cordeiro C. The glyoxalase pathway: The first hundred years... and beyond. Biochem J. 2013 Jul;453(1):1–15. https://doi.org/10.1042/BJ20121743 PMID:23763312

[42] Pohodich AE, Zoghbi HY. Rett syndrome: Disruption of epigenetic control of postnatal neurological functions. Hum Mol Genet. 2015 Oct;24(R1):R10–R16. https://doi.org/10.1093/hmg/ddv217 PMID:26060191

[43] Sun J, Liu Y, Tran J, O’Neal P, Baudry M, Bi X. mTORC1-S6K1 inhibition or mTORC2 activation improves hippocampal synaptic plasticity and learning in Angelman syndrome mice. Cell Mol Life Sci. 2016;73(22):4303–4314. https://doi.org/10.1007/s00018-016-2269-z PMID: 27173058

[44] Jeste SS, Varcin KJ, Hellemann GS, Gulsrud AC, Bhatt R, Kasari C, et al. Symptom profiles of autism spectrum disorder in tuberous sclerosis complex. Neurology. 2016;87(8):766–772. https://doi.org/10.1212/WNL.0000000000003002 PMID: 27440144

[45] Kalkman HO, Feuerbach D. Microglia M2A polarization as potential link between food allergy and autism spectrum disorders. Pharmaceuticals. 2017;10(4):95. https://doi.org/10.3390/ph10040095

[46] Gaspar P, Cases O, Maroteaux L. The developmental role of serotonin: News from mouse molecular genetics. Nat Rev Neurosci. 2003;4:1002–1012. https://doi.org/10.1038/nrn1256

[47] Mahboub S, Al-Suhaibani S, Ellatif HA, Elkholi SM. Maternal- and child-related risk factors for autism during the perinatal period. Middle East Curr Psychiatry. 2023;30:53. https://doi.org/10.1186/s43045- 023-00326-0

[48] Muller CL, Anacker AM, Veenstra-VanderWeele J. The serotonin system in autism spectrum disorder: From biomarker to animal models. Neuroscience. 2016;321:24–41. 10.1016/j.neuroscience.2015.11.010 PMID: 26577932

[49] Rosenfeld CS. Placental serotonin signaling, pregnancy outcomes, and regulation of fetal brain development†. Biol Reprod. 2020;102(3):532–538. doi:10.1093/biolre/ioz204

[50] Blazevic S, Horvaticek M, Kesic M, Zill P, Hranilovic D, Ivanisevic M, et al. Epigenetic adaptation of the placental serotonin transporter gene (SLC6A4) to gestational diabetes mellitus. PLoS One. 2017;12(6):e0179934. https://doi.org/10.1371/journal.pone.0179934

[51] Braunschweig D, Krakowiak P, Duncanson P, Boyce R, Hansen RL, Ashwood P, et al. Autismspecific maternal autoantibodies recognize critical proteins in developing brain. Transl Psychiatry. 2013 Jul;3(7):e277. https://doi.org/10.1038/tp.2013.50 PMID:23838888

[52] Piras IS, Haapanen L, Napolioni V, Sacco R, Van de Water J, Persico AM. Anti-brain antibodies are associated with more severe cognitive and behavioral profiles in Italian children with autism spectrum disorder. Brain Behav Immun. 2014 May;38:91–99. https://doi.org/10.1016/j.bbi.2013.12.020 PMID:24389156

[53] Campbell DB, Li C, Sutcliffe JS, Persico AM, Levitt P. Genetic evidence implicating multiple genes in the MET receptor tyrosine kinase pathway in autism spectrum disorder. Autism Res. 2008 Jun;1(3):159–168. https://doi.org/10.1002/aur.27 PMID:19360663

[54] Heuer L, Braunschweig D, Ashwood P, Van de Water J, Campbell DB. Association of a MET genetic variant with autism-associated maternal autoantibodies to fetal brain proteins and cytokine expression. Translational Psychiatry. 2011;1(10):e48. https://doi.org/10.1038/tp.2011.48 PMID: 22833194

[55] Demirci C, Ernst S, Alvarez-Perez JC, Rosa T, Valle S, Shridhar V, et al. Loss of HGF/c-MET signaling in pancreatic β-cells leads to incomplete maternal β-cell adaptation and gestational diabetes mellitus. Diabetes. 2012 May;61(5):1143–1152. https://doi.org/10.2337/db11-1154 PMID:22427375

[56] Basak S, Mallick R, Duttaroy AK. Maternal docosahexaenoic acid status during pregnancy and its impact on infant neurodevelopment. Nutrients. 2020;12:3615. https://doi.org/10.3390/nu12123615

[57] Mishra JS, Zhao H, Hattis S, Kumar S. Elevated glucose and insulin levels decrease DHA transfer across human trophoblasts via SIRT1-dependent mechanism. Nutrients. 2020;12:1271. https://doi.org/10.3390/nu12051271

[58] Zornoza-Moreno M, Fuentes-Hernández S, Carrión V, Alcántara-López MV, Madrid JA, López-Soler C, et al. Is low docosahexaenoic acid associated with disturbed rhythms and neurodevelopment in offsprings of diabetic mothers? Eur J Clin Nutr. 2014;68:931–937. https://doi.org/10.1038/ejcn.2014.104

[59] Aishworiya R, Ma VK, Stewart S, Hagerman R, Feldman HM. Meta-analysis of the modified checklist for autism in toddlers, revised/follow-up for screening. Pediatrics. 2023 Jun;151(6):e2022059393. https://doi.org/10.1542/peds.2022-059393 PMID:37203373

[60] Tsang LP, How CH, Yeleswarapu SP, Wong CM. Autism spectrum disorder: Early identification and management in primary care. Singapore Med J. 2019 Jul;60(7):324–328. https://doi.org/10.11622/smedj.2019070 PMID:31378825