Dubai Medical Journal
ISSN: 2571-726X
Pioneering research in medicine, health sciences, nursing, pharmaceuticals, and laboratory work
Evaluation of Interactions Between Transient Receptor Potential Vanilloid 1 and Active Constituents Using Molecular Docking
Published date: Jun 30 2025
Journal Title: Dubai Medical Journal
Issue title: Dubai Medical Journal (DMJ): Volume 8, Issue 2
Pages: 140 - 152
Authors:
Abstract:
Introduction: Pain, whether acute or chronic, imposes huge economic burdens in the societies due to complexities in the signaling pathways that lead to pain. There are many nociceptive receptors and channels that play key roles in the processing and maintenance of pain. Transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel that is considered a crucial target in pain. Drugs that are available in the market have side effects, highlighting the need to find new analgesics that have no side effects.
Methods: In this study, we assessed the interactions between active constituents and TRPV1 receptor using molecular docking in comparison to capsazepine and the analgesic drug SB-3567791; 3-(4-chlorophenyl)-N-(3-methoxyphenyl)-2-propenamide. Molecular docking is a computational technique that provides calculation for the non-covalent binding of protein or receptor and ligand molecule(s) and aids in investigating the binding interaction between ligands and receptors. These selected active constituents belong to different classes of secondary metabolites including alkaloids, terpenoids, and flavonoids.
Results: The results indicate promising binding affinities between and TRPV1 receptor and speciofoline, mitragynine, 7-hydroxymitragynine, salvinorin, mescaline, acacetin, ladanein, vulgarin, marrubiin, geranial, neral, epi-α-cadinol (t-cadinol), myrtenol, δ- cadinene, and α-terpineol. The compound α-calacorene showed no affinity toward TRPV1 receptor at all.
Conclusion: Many active compounds are ligands for TRPV1 channel and can be assessed to determine their effects on inhibiting TRPV1 as analgesics. These results allow us to assess the effects of many of these compounds on TRPV1 channel in vivo and in vitro.
Keywords: TRPV1, active constituents, ligands, docking, receptor
References:
[1] Vos T, Lim SS, Abbafati C, Abbas KM, Abbasi M, Abbasifard M, et al.; GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020 Oct;396(10258):1204– 1222. https://doi.org/10.1016/S0140-6736(20)30925-9 PMID:33069326
[2] Liu S, Kelliher L. Physiology of pain—a narrative review on the pain pathway and its application in the pain management. Dig Med Res. 2022;5:56–56. https://doi.org/10.21037/dmr-21-100
[3] Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron. 1998 Sep;21(3):531–543. https://doi.org/10.1016/S0896-6273(00)80564-4 PMID:9768840
[4] Julius D. TRP channels and pain. Annu Rev Cell Dev Biol. 2013;29(1):355–384. https://doi.org/10.1146/annurev-cellbio-101011-155833 PMID:24099085
[5] Jaffal SM. Role of TRPV1 in health and disease [ JERP]. J Explor Res Pharmacol. 2023;8(4):348–361.
[6] Huang W, Wang Y, Tian W, Cui X, Tu P, Li J, et al. Biosynthesis investigations of terpenoid, alkaloid, and flavonoid antimicrobial agents derived from medicinal plants. Antibiotics (Basel). 2022 Oct;11(10):1380. https://doi.org/10.3390/antibiotics11101380 PMID:36290037
[7] Khan MI, Khan A, Zafar S, Aslam S, Khan AU, Shal B, et al. Anti-nociceptive effects of magnolol via inhibition of TRPV1/P2Y and TLR4/NF-κB signaling in a postoperative pain model. Life Sci. 2023 Jan;312:121202. https://doi.org/10.1016/j.lfs.2022.121202 PMID:36414090
[8] Adasme MF, Linnemann KL, Bolz SN, Kaiser F, Salentin S, Haupt VJ, et al. PLIP 2021: Expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021 Jul;49 W1:W530–W534. https://doi.org/10.1093/nar/gkab294 PMID:33950214
[9] Yelshanskaya MV, Sobolevsky AI. Ligand-binding sites in vanilloid-subtype TRP channels. Front Pharmacol. 2022 May;13:900623. https://doi.org/10.3389/fphar.2022.900623PMID:35652046
[10] Neuberger A, Oda M, Nikolaev YA, Nadezhdin KD, Gracheva EO, Bagriantsev SN, et al. Human TRPV1 structure and inhibition by the analgesic SB-366791. Nat Commun. 2023 Apr;14(1):2451. https://doi.org/10.1038/s41467-023-38162-9 PMID:37117175
[11] Wang X, Bao C, Li Z, Yue L, Hu L. Side effects of opioids are ameliorated by regulating TRPV1 receptors. Int J Environ Res Public Health. 2022 Feb;19(4):2387. https://doi.org/10.3390/ijerph19042387 PMID:35206575
[12] Sohilait MR, Pranowo HD, Haryadi W. Molecular docking analysis of curcumin analogues with COX-2. Bioinformation. 2017 Nov;13(11):356–359. https://doi.org/10.6026/97320630013356PMID:29225427
[13] González AM, Tracanna MI, Amani SM, Schuff C, Poch MJ, Bach H, et al. Chemical composition, antimicrobial and antioxidant properties of the volatile oil and methanol extract of Xenophyllum poposum. Nat Prod Commun. 2012 Dec;7(12):1663–1666. https://doi.org/10.1177/1934578X1200701230 PMID:23413577
[14] Popoola OK, Elbagory AM, Ameer F, Hussein AA. Marrubiin. Molecules. 2013 Jul;18(8):9049–9060. https://doi.org/10.3390/molecules18089049 PMID:23899837
[15] De Jesus RA, Cechinel-Filho V, Oliveira AE, Schlemper V. Analysis of the antinociceptive properties of marrubiin isolated from Marrubium vulgare. Phytomedicine. 2000 Apr;7(2):111–115. https://doi.org/10.1016/S0944-7113(00)80082-3 PMID:10839213
[16] Meyre-Silva C, Yunes RA, Schlemper V, Campos-Buzzi F, Cechinel-Filho V. Analgesic potential of marrubiin derivatives, a bioactive diterpene present in Marrubium vulgare (Lamiaceae). Farmaco. 2005 Apr;60(4):321–326. https://doi.org/10.1016/j.farmac.2005.01.003PMID:15848207
[17] Sever Yιlmaz B, Özbek H, Saltan Çitoğlu G. Antinociceptive and anti-inflammatory activities of Ballota inaequidens. Pharm Biol. 2006;44(8):636–641. https://doi.org/10.1080/13880200600897577
[18] Alkhatib R, Joha S, Cheok M, Roumy V, Idziorek T, Preudhomme C, et al. Activity of ladanein on leukemia cell lines and its occurrence in Marrubium vulgare. Planta Med. 2010 Jan;76(1):86–87. https://doi.org/10.1038/s41598-020-76119-w PMID:33154449
[19] Todd DA, Kellogg JJ, Wallace ED, Khin M, Flores-Bocanegra L, Tanna RS, et al. Chemical composition and biological effects of kratom (Mitragyna speciosa): In vitro studies with implications for efficacy and drug interactions. Sci Rep. 2020 Nov;10(1):19158. https://doi.org/10.1038/s41598-020-76119-w PMID:33154449
[20] McCurdy CR, Sufka KJ, Smith GH, Warnick JE, Nieto MJ. Antinociceptive profile of salvinorin A, a structurally unique kappa opioid receptor agonist. Pharmacol Biochem Behav. 2006 Jan;83(1):109–113. https://doi.org/10.1016/j.pbb.2005.12.011 PMID:16434091
[21] Dinis-Oliveira RJ, Pereira CL, da Silva DD. Pharmacokinetic and pharmacodynamica aspects of peyote and mescaline: Clinical and forensic repercussions. Curr Mol Pharmacol. 2019;12(3):184–194. https://doi.org/10.2174/1874467211666181010154139 PMID:30318013
[22] Ferri S, Santagostino A, Braga PC. Development of tolerance to the antinociceptive effect of mescaline intraventricularly administered to rabbits. Psychopharmacology (Berl). 1976;47(3):261–265. https://doi.org/10.1007/BF00427610
[23] Carballo-Villalobos AI, González-Trujano ME, López-Mu noz FJ. Evidence of mechanism of action of anti-inflammatory/antinociceptive activities of acacetin. Eur J Pain. 2014 Mar;18(3):396–405. https://doi.org/10.1002/j.1532-2149.2013.00378.x PMID:23918449
[24] Rauf A, Khan R, Khan H, Ullah B, Pervez S. Antipyretic and antinociceptive potential of extract/fractions of Potentilla evestita and its isolated compound, acacetin. BMC Complement Altern Med. 2014 Nov;14(1):448. https://doi.org/10.1186/1472-6882-14-448 PMID:25407486
[25] de Paula JA, Silva MR, Costa MP, Diniz DG, Sá FA, Alves SF, et al. Phytochemical analysis and antimicrobial, antinociceptive, and anti-inflammatory activities of two chemotypes of Pimenta pseudocaryophyllus (Myrtaceae). Evid Based Complement Alternat Med. 2012;2012:420715. https://doi.org/10.1155/2012/420715 PMID:23082081
[26] Nishijima CM, Ganev EG, Mazzardo-Martins L, Martins DF, Rocha LR, Santos AR, et al. Citral: A monoterpene with prophylactic and therapeutic anti-nociceptive effects in experimental models of acute and chronic pain. Eur J Pharmacol. 2014 Aug;736:16–25. https://doi.org/10.1016/j.ejphar.2014.04.029 PMID:24792822
[27] Alves Rodrigues Santos SA, de Barros Mamede Vidal Damasceno M, Alves Magalh aes FE, Sessle BJ, Amaro de Oliveira B, Alves Batista FL, et al. Transient receptor potential channel involvement in antinociceptive effect of citral in orofacial acute and chronic pain models. EXCLI J. 2022 Jun;21:869– 887. PMID:36172071
[28] Queiroz JC, Antoniolli ÂR, Quintans-Júnior LJ, Brito RG, Barreto RS, Costa EV, et al. Evaluation of the anti-inflammatory and antinociceptive effects of the essential oil from leaves of Xylopia laevigata in experimental models. ScientificWorldJournal. 2014;2014:816450. https://doi.org/10.1155/2014/816450 PMID:25097889
[29] Castillejos-Ramírez E, Pérez-Vásquez A, Torres-Colín R, Navarrete A, Andrade-Cetto A, Mata R. Antinociceptive effect of an aqueous extract and essential oil from Baccharis heterophylla. Plants. 2021 Jan;10(1):116. https://doi.org/10.3390/plants10010116PMID:33429861
[30] Zhang Y, Wang X, Ma L, Dong L, Zhang X, Chen J, et al. Anti-inflammatory, antinociceptive activity of an essential oil recipe consisting of the supercritical fluid CO2 extract of white pepper, long pepper, cinnamon, saffron and myrrh in vivo. J Oleo Sci. 2014;63(12):1251–1260. https://doi.org/10.5650/jos.ess14061 PMID:25263165
[31] Silva RO, Salvadori MS, Sousa FB, Santos MS, Carvalho NS, Sousa DP, et al. Evaluation of the anti-inflammatory and antinociceptive effects of myrtenol, a plant-derived monoterpene alcohol, in mice. Flavour Fragrance J. 2014;29(3):184–192. https://doi.org/10.1002/ffj.3195
[32] World Health Organization (WHO). Expert Committee on Drug Dependence. Pre-review report: Kratom (Mitragyna speciosa), mitragynine, and 7-hydroxymitragynine. Forty-fourth Meeting Geneva, 11-15 October 2021.
[33] Cunningham CW, Rothman RB, Prisinzano TE. Neuropharmacology of the naturally occurring kappa-opioid hallucinogen salvinorin A. Pharmacol Rev. 2011 Jun;63(2):316–347. https://doi.org/10.1124/pr.110.003244 PMID:21444610
[34] Roth BL, Baner K, Westkaemper R, Siebert D, Rice KC, Steinberg S, et al. Salvinorin A: A potent naturally occurring nonnitrogenous kappa opioid selective agonist. Proc Natl Acad Sci USA. 2002 Sep;99(18):11934–11939. https://doi.org/10.1073/pnas.182234399 PMID:12192085
[35] Brito-da-Costa AM, Dias-da-Silva D, Gomes NG, Dinis-Oliveira RJ, Madureira-Carvalho Á. Pharmacokinetics and pharmacodynamics of Salvinorin A and Salvia divinorum: Clinical and forensic aspects. Pharmaceuticals (Basel). 2021 Feb;14(2):116. https://doi.org/10.3390/ph14020116 PMID:33546518
[36] Han DG, Cha E, Joo J, Hwang JS, Kim S, Park T, et al. Investigation of the factors responsible for the poor oral bioavailability of acacetin in rats: Physicochemical and biopharmaceutical aspects. Pharmaceutics. 2021 Jan;13(2):175. https://doi.org/10.3390/pharmaceutics13020175 PMID:33525442
[37] Didigwu OK, Nnadi CO. Drug-likeness, pharmacokinetics, and toxicity prediction of phytotoxic terpenoids. Proceedings of the 1st International Electronic Conference on Toxins. 20–22 March 2024;102(1):47. https://doi.org/10.3390/proceedings2024102047
[38] Aćimović M, Jeremić K, Salaj N, Gavarić N, Kiprovski B, Sikora V, et al. Marrubium vulgare L.: A Phytochemical and pharmacological overview. Molecules. 2020 Jun;25(12):2898. https://doi.org/10.3390/molecules25122898 PMID:32599693