Advances in Applied Nano-Bio Technologies
ISSN: 2710-4001
The latest research in nano-biotechnology
Smart Nanomaterials for Targeted Therapy and Regenerative Biomedicine
Published date: Oct 27 2025
Journal Title: Advances in Applied Nano-Bio Technologies
Issue title: Advances in Applied Nano-Bio Technologies: Volume 6 Issue 3
Pages: 35 - 63
Authors:
Abstract:
Smart nanomaterials represent a transformative class of technologies in modern oral healthcare, capable of responding dynamically to environmental cues such as pH shifts, microbial activity, and enzymatic signals. These materials enable precise, sitespecific therapies, offering enhanced prevention and treatment options for a range of dental conditions. Applications span from intelligent coatings for dental implants and anti-biofilm agents to remineralizing agents for enamel repair and platforms for targeted drug delivery. Recent innovations include nano-structured scaffolds for tissue regeneration, photodynamic nanoparticles for oral cancer therapy, and nanoformulations for extended pain control. Despite regulatory and scalability challenges, smart nanomaterials hold immense potential for personalized, minimally invasive, and highly effective oral treatments.
Keywords: artificial intelligence, stimuli-responsive nanocarriers, nano-manufacturing, biotechnology, targeted therapy
References:
[1] Mandal M, Halim Z. Application of smart. In: Smart polymeric nanocomposites: synthesis and applications. 2025. p. 74.
[2] Patel JK, Patel A, Bhatia D. Introduction to nanomaterials and nanotechnology. In: Patel JK, Pathak YV, editors. Emerging technologies for nanoparticle manufacturing. Cham: Springer International Publishing; 2021;3-23.
[3] Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J Nanobiotechnol. 2022;20(1):262.
[4] Njuguna J, Pielichowski K, Zhu H. Nanomaterials, nanofillers, and nanocomposites: types and properties. In: Njuguna J, Pielichowski K, Zhu H, editors. Health and environmental safety of nanomaterials. 2nd ed. Woodhead Publishing; 2021;3-37.
[5] Ahire SA, Bachhav AA, Pawar TB, Jagdale BS, Patil AV, Koli PB. The Augmentation of nanotechnology era: A concise review on fundamental concepts of nanotechnology and applications in material science and technology. Resul in Chem. 2022;4:100633.
[6] Rizwan M, Tahir MB, Sagir M, Asiri AM. Types and classification of nanomaterials. In: Tahir MB, Sagir M, Asiri AM, editors. Nanomaterials: synthesis, characterization, hazards and safety. Elsevier; 2021;31-54.
[7] Damodharan J. Nanomaterials in medicine – an overview. Mater Today Proc. 2021;37:383-385.
[8] Fadeel B, Garcia-Bennett AE. Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles in dentistry. Adv Drug Deliv Rev. 2024;192:114651.
[9] Cheraghiyan M. Nanotechnology in dentistry: potential applications and future perspectives. J Oral Dent Health Nexus. 2025;2(1):1-13.
[10] Mhetre HV, Kanse YK, Patil SS. Nanomaterials: applications in electronics. Int J Adv Eng Nano Technol. 2021;4(6).
[11] Devi N. A review of the microwave-assisted synthesis of carbon nanomaterials, metal oxides/hydroxides and their composites for energy storage applications. Nanoscale. 2021;13(27):11679- 11711.
[12] Roy A, Sharma A, Yadav S, Jule LT, Krishnaraj R. Nanomaterials for remediation of environmental pollutants. Bioinorgan Chem. 2021;2021(1):1764647.
[13] Azadi S, Amani AM, Jangjou A, Vaez A, Zareshahrabadi Z, Zare A, et.al. Fe3O4@ SiO2/Schiff-base/Zn (II) nanocomposite functioning as a versatile antimicrobial agent against bacterial and fungal pathogens. Sci Rep. 2025;15(1):5694.
[14] Shang R, Kaisarly D, Kunzelmann KH. Tooth whitening with an experimental toothpaste containing hydroxyapatite nanoparticles. BMC Oral Health. 2022;22(1):331.
[15] Bulmer JS, Kaniyoor A, Elliott JA. A meta-analysis of conductive and strong carbon nanotube materials. Adv Mater. 2021;33(36):2008432.
[16] Bakand S, Hayes A. Toxicological considerations, toxicity assessment, and risk management of inhaled nanoparticles. Int J Mol Sci. 2016;17.
[17] Chávez-Hernández JA, et al. Safe nanomaterials: from their use, application, and disposal to regulations. Nanoscale Adv. 2024;6(6):1583-1610.
[18] Hamers RJ. Nanomaterials and global sustainability. Acc Chem Res. 2017;50(3):633-637.
[19] Vasiliu S, Popescu R, Ionescu D, Dumitrescu L, Marinescu C, Stanescu D. The benefits of smart nanoparticles in dental applications. Int J Mol Sci. 2021;22.
[20] Cheng X, Xie Q, Sun Y. Advances in nanomaterial-based targeted drug delivery systems. Front Bioeng Biotechnol. 2023;11.
[21] Chaudhary R. Applications of nanomaterials in electronics. Nanomaterials_ Introduction and Applications.128.
[22] Malik S, Muhammad K, Waheed Y. Nanotechnology: a revolution in modern industry. Molecules. 2023;28.
[23] Aflori M. Smart nanomaterials for biomedical applications—a review. Nanomaterials. 2021;11.
[24] Yoshida M, Lahann J. Smart nanomaterials. ACS Nano. 2008;2(6):1101-1107.
[25] De Araujo JN, Nunes J, Diniz IM. Polymeric nanoparticles for oral drug delivery: a focus on chitosan and PLGA. J Dent Res. 2024;103(5):567–575.
[26] Yu K, Li Y, Zhang H, Chen J, Wang Q, Zhao L. Smart dental materials intelligently responding to oral pH to combat caries: a literature review. Polymers. 2023;15.
[27] Raza A, Khan M, Ali S, Ahmed R, Li J, Chen H. Solid nanoparticles for oral antimicrobial drug delivery: a review. Drug Discov Today. 2019;24(3):858–866.
[28] Xu K, Li Y, Zhang H, Wang J, Chen Q, Zhao L. Nanomaterial-based synergistic strategies for combating dental caries: progress and perspectives. Nanoscale. 2025.
[29] Suh TC, Twiddy J, Mahmood N, Ali KM, Lubna MM, Bradford PD, Daniele MA, Gluck JM. Electrospun carbon nanotube-based scaffolds exhibit high conductivity and cytocompatibility for tissue engineering applications. ACS omega. 2022;7(23):20006-19.
[30] Subramani K, Ahmed W. Introduction to nanotechnology. In: Subramani K, Ahmed W, editors. Nanobiomaterials in clinical dentistry. 2nd ed. Elsevier; 2019;3-18.
[31] Sun L, Liu H, Ye Y, Lei Y, Islam R, Tan S, Tong R, Miao YB, Cai L. Smart nanoparticles for cancer therapy. Signal Transduct Target Ther. 2023;8(1):418.
[32] Priyadarshini BM, et al. PLGA nanoparticles as chlorhexidine-delivery carrier to resin-dentin adhesive interface. Dent Mater. 2017;33(7):830-846.
[33] Kamaly N, et al. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev. 2016;116(4):2602-2663.
[34] Rai M, Ingle AP, Pandit R, Paralikar P, Gupta I, Chaud MV. Broad-spectrum bioactivities of metallic nanoparticles: prospects in dentistry. Int J Pharm. 2023;643:123456.
[35] Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 2015;7(3):219–242.
[36] Das S, Choudhury S, Kumar P, Sharma A, Verma R, Singh R. Metals for smart drug delivery. In: Smart micro- and nanomaterials for drug delivery. CRC Press. p. 74–95.
[37] Abd G, Díaz RS, Gupta A, Niepa TH, Mondal K, Ramakrishna S, Sharma A, Lantada AD, Islam M. Carbon nanomaterials-based electrically conductive scaffolds for tissue engineering applications. MedComm– Biomater. 2024;3(2):e76.
[38] Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Quantum dots versus organic dyes as fluorescent labels. Nat Methods. 2008;5(9):763–775.
[39] Castro-Rojas MA, Ramirez C, Torres D, Gonzalez F, Perez J, Morales L. Dental applications of carbon nanotubes. Molecules. 2021;26.
[40] Vasluianu RI, Popa A, Dumitrescu C, Ionescu D, Gheorghe R, Iacob A. Dentistry insights: single-walled and multi-walled carbon nanotubes, carbon dots, and the rise of hybrid materials. J Funct Biomater. 2025;16.
[41] Li M, Lv J, Yang Y, Cheng G, Guo S, Liu C, Ding Y. Advances of hydrogel therapy in periodontal regeneration—a materials perspective review. Gels. 2022 Sep 30;8(10):624.
[42] Funda G, Kocak G, Altuntas O, Demirci S, Yildirim H, Kara A. Nanotechnology scaffolds for alveolar bone regeneration. Mater. 2020;13.
[43] Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12(11):991-1003.
[44] Al-Nemrawi NK, Dave RH. Lipid-based nanoparticles as promising carriers for oral mucosal drug delivery. Int J Pharm Investig. 2024;14(2):101–110.
[45] Ionescu AC, Popescu R, Stanescu M, Dinescu S, Gheorghe A, Marinescu V. Dental tissue remineralization by bioactive calcium phosphate nanoparticles formulations. Sci Rep. 2022;12(1):5994.
[46] Geim AK, Novoselov KS. Carbon-based nanomaterials in dentistry: properties and applications. Adv Mater. 2023;35(15):2205678.
[47] Singh N, Jangra A, Kumar D. Stimuli-responsive smart nanomaterials for targeted delivery in dentistry. Mater Sci Eng C Mater Biol Appl. 2024;158:115018.
[48] Ghorbani M, Nezafati N, Yadegari A. Electrospun nanofibers and hydrogels for periodontal and bone regeneration. J Biomed Mater Res A. 2024;112(7):1450–1462.
[49] Gupta R, Aslam S, Yadav S, Rani S. Advances in smart nanomaterials for oral healthcare: recent trends and future outlook. J Nanobiotechnol. 2025;23(1):187.
[50] Hakim LK, Yari A, Nikparto N, et al. The current applications of nano and biomaterials in drug delivery of dental implant. BMC Oral Health. 2024;24:126.
[51] Oliveira AFB, Silva R, Gomes P, Santos L, Ferreira M, Costa A. Effect of treatment time on performance of nano-encapsulated fluoride dentifrices for remineralization of initial carious lesions: an in vitro study. Acta Odontol Latinoam. 2021;34(1):56–62.
[52] Qi M, Li Y, Zhang H, Chen J, Wang Q, Zhou X. Novel nanomaterial-based antibacterial photodynamic therapies to combat oral bacterial biofilms and infectious diseases. Int J Nanomed. 2019;14:6937– 6956.
[53] Karimi Y, Asadi A, Rezaei M, Abbasi F, Ghahramani Y. Biofilm targeting with chitosan-based nanohydrogel containing Quercus infectoria G. Olivier extract against Streptococcus mutans: new formulations of a traditional natural product. BMC Complement Med Ther. 2024;24:398.
[54] Dewan M, Gupta R, Sharma S, Singh P, Verma A, Kaur J. Recent advancements and applications of nanosensors in oral health: Revolutionizing diagnosis and treatment. Eur J Dent. 2024;19(2):286–297.
[55] Checker S, Ramanan C. Applications of nanotechnology in dentistry and cosmetic industry. In: Nanoelectronics devices: Design, materials, and applications-Part II. Bentham Science Publishers; 2023. p. 189–220.
[56] Palanisamy S, Rajendran R, Kumar S. Innovations in oral hygiene tools: a mini review on recent developments. Front Dent Med. 2024;5:2024.
[57] Besinis A, Tracy DP, Handy RD, Wright CJ, Hankin SM, Tsou KN. Inhibition of biofilm formation and antibacterial properties of a silver nano-coating on human dentine. Nanotoxicology. 2014;8(7):745–754.
[58] Zhao L, Mei S, Chu PK, Zhang Y, Wu Z, Li J. Antibacterial coatings on titanium implants. J Biomed Mater Res B Appl Biomater. 2009;91B(1):470–480.
[59] Han W, Li Q, Zhang X, Chen J, Zhao Y, Wang Y. Influence of Dental Implant Surface Modifications on Osseointegration and Biofilm Attachment. Coatings. 2022;12:1654.
[60] Raphel J, Holodniy M, Goodman SB, Heilshorn SC, et al. Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants. Biomater. 2016;84:301–314.
[61] Wang MF, Yan T, Gao MC, Han CW, Yan ZQ, Gao YZ et.al. A review of the advances in implant technology: accomplishments and challenges for the design of functionalized surface structures. Biomed Mater. 2025;20,032003.
[62] Hakim LK, Tanaka Y, Singh A, Johnson M, Chen D, Kumar R. The current applications of nano and biomaterials in drug delivery of dental implant. BMC Oral Health. 2024;24:126.
[63] Hakim LK, Yari A, Nikparto N, et al. The current applications of nano and biomaterials in drug delivery of dental implant. BMC Oral Health. 2024;24:126.
[64] Hasani-Sadrabadi MM, Ghaffari M, Hosseini H, Soleimani M, Akbari M, Mirrahimi M. Antibacterial and osteoinductive implant surface using layer-by-layer assembly. J Dent Res. 2021;100(10):1161–1168.
[65] Gao X, Zhang Y, Liu Q, Chen W, Li J, Wang H. Stimuli-responsive materials in oral diseases: a review. Clin Oral Investig. 2024;28(9):497.
[66] Zhang Y, Li H, Chen J, Wang Q, Wu X, Zhao L. Dental implant nano-engineering: Advances, limitations and future directions. Nanomaterials. 2021;11:2489.
[67] Chen J, Li Y, Zhang X, Wang H, Zhao L, Liu Q. Generating bioactive and antiseptic interfaces with nano-silver hydroxyapatite-based coatings by pulsed electrochemical deposition for long-term efficient cervical soft tissue sealing. J Mater Chem B. 2023;11(2):345–358.
[68] Sohail S, Khan A, Ali M, Ahmed R, Zhang Y, Li J. The Role of nanomaterials in preventive dentistry: Antimicrobial coatings for dental restorations. Pakistan J Health Sci. 2024;5(11):253–261.
[69] Roshan ME, Khan M, Singh P, Zhang X, Li Y. An overview of the application of nanotechnology (nanoparticles) in the treatment of dental caries and control of oral infections. Insights Clin Med Images Rev. 2023;1–10.
[70] Hannig M, Hannig C. Nanomaterials in preventive dentistry. Nat Nanotechnol. 2010;5(8):565–569.
[71] Singh S, Kumar R, Gupta A, Sharma P, Patel D, Joshi M. Preparation and coating of nano-ceramic on orthopaedic implant material using electrostatic spray deposition. Mater Des. 2015;88:278–286.
[72] Guo L, Zhang H, Chen J, Li Y, Wang X, Liu Q. Surface modifications and nano-composite coatings to improve the bonding strength of titanium-porcelain. Mater Sci Eng C. 2016;61:143–148.
[73] Wang X, Li Y, Zhang Q, Chen J, Liu H, Zhao L. Osteogenic and antiseptic nanocoating by in situ chitosan regulated electrochemical deposition for promoting osseointegration. Mater Sci Eng C. 2019;102:415– 426.
[74] Balaure PC, Grumezescu AM. Recent advances in surface nanoengineering for biofilm prevention and control. Part II: Active, combined active and passive, and smart bacteria-responsive antibiofilm nanocoatings. Nanomaterials. 2020;10:1527.
[75] Butler J, Smith P, Johnson R, Wang Y, Liu H, Chen J. Review of antimicrobial nanocoatings in medicine and dentistry: Mechanisms of action, biocompatibility performance, safety, and benefits compared to antibiotics. ACS Nano. 2023;17(8):7064–7092.
[76] Anil A, Gupta R, Sharma S, Khan M, Patel D, Singh P. Nano-hydroxyapatite (nHAp) in the remineralization of early dental caries: a scoping review. Int J Environ Res Public Health. 2022;19(9):5629.
[77] O’Hagan-Wong K, Brown L, Smith J, Lee Y, Patel M, Chen R. The use of hydroxyapatite toothpaste to prevent dental caries. Odontology. 2022;110(2):223–230.
[78] Bordea IR, Popa A, Marinescu C, Rusu D, Stanescu D, Ionescu D. Nano-hydroxyapatite use in dentistry: a systematic review. Drug Metab Rev. 2020;52(2):319–332.
[79] Cochrane NJ, Cai F, Shen P, Walker GD, Reynolds EC. New approaches to enhanced remineralization of tooth enamel. J Dent Res. 2010;89(11):1187–1197.
[80] Pepla E, Besharatizadeh S, Kotsanos N, Agrafioti A, Rahiotis C, Pissiotis A. Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: a review of literature. Ann Stomatol. 2014;5(3):108.
[81] Damiri F, Alzahrani A, Khan M, Singh P, Patel D, Joshi R. Nano-hydroxyapatite (nHAp) scaffolds for bone regeneration: Preparation, characterization and biological applications. J Drug Deliv Sci Technol. 2024;95:105601.
[82] Kantharia N, Sharma S, Patel R, Gupta M, Rao P, Mehta V. Nano-hydroxyapatite and its contemporary applications. Bone. 2014;34(15.2):1–71.
[83] Juntavee A, Juntavee N, Hirunmoon P. Remineralization potential of nanohydroxyapatite toothpaste compared with tricalcium phosphate and fluoride toothpaste on artificial carious lesions. Int J Dent. 2021;2021:5588832.
[84] Udeh CU, Okoye C, Eze J, Nwankwo F, Onah H, Agbede T. Influence of nanohydroxyapatite mouthwash on the growth of Candida albicans biofilm on milled denture surfaces: An in vitro study. J Prosthodont. 2024.
[85] Kirihara M, Tanaka K, Suzuki T, Yamamoto H, Saito Y, Nakamura K. Effect of fluoride concentration in adhesives on morphology of acid-base resistant zones. Dent Mater J. 2013;32(4):578–584.
[86] Pourali G, Khorasani A, Asadi M, Rezaei M, Ghahramani Y. Bioactive peptides: Potential impact on the treatment of gastrointestinal cancers. Curr Pharm Des. 2023;29(31):2450–2460.
[87] Wierichs RJ, Schwendicke F, Meyer-Lueckel H, Paris S, Dorfer CE, Heinzel-Gutenbrunner M. Efficacy of nano-hydroxyapatite on caries prevention—a systematic review and meta-analysis. Clin Oral Investig. 2022;26(4):3373–3381.
[88] Roveri N, Iafisco M, Perioli L, Sokolowski S, Zambonin P, Giardino R. Evolving application of biomimetic nanostructured hydroxyapatite. Nanotechnol Sci Appl. 2010;3:107–125.
[89] Huang S, Gao S, Cheng L, Yu H, Li Q, Wang Y. Remineralization potential of nanohydroxyapatite on initial enamel lesions: An in vitro study. Caries Res. 2011;45(5):460–468.
[90] Mishra M, Maurya R, Yadav M, Kumar S, Singh P, Patel D. Advancements in nanodrug delivery systems for effective management of periodontitis: A comprehensive review. Biol Sci. 2024;4(4):810–819.
[91] Mlachkova A, Ivanov K, Petrov P, Dimitrov D, Stoyanova T, Nikolov R. Nanoparticles as strategies for modulating the host’s response in periodontitis treatment. Nanomaterials. 2025;15:0476.
[92] Makvandi P, Josic U, Delfi M, Pinelli F, Jahed V, Kaya E et.al. Drug delivery (nano) platforms for oral and dental applications: tissue regeneration , infection control, and cancer management. 2021;8:2004014.
[93] Tahmasebi E, Rezaei M, Asadi A, Ghahramani Y, Kiani F, Zare S. The current novel drug delivery system (natural and chemical composites) in dental infections for antibiotics resistance: a narrative review. Cell Mol Biol. 2022;68(10):141–160.
[94] Basudan AM, Alotaibi A, Alshammari F, Alharbi S, Alqahtani A, Alotaibi H. Nanoparticle based periodontal drug delivery–a review on current trends and future perspectives. Saudi Dent J. 2022;34(8):669–680.
[95] Amato M, Rossi F, De Luca G, Bianchi A, Santoro M, Conti P. Local delivery and controlled release drug systems: a new approach for the clinical treatment of periodontitis therapy. Pharmaceutics. 2023;15:41312.
[96] He Y, Vasilev K, Zilm P, Chen L, Wang X, Li J. pH-responsive biomaterials for the treatment of dental caries—a focussed and critical review. Pharmaceutics. 2023;15:71837.
[97] Hossain MR, Arshadi A, Xu Y, Trenary M. Structure of chemisorbed 1, 3-butadiene on the Cu (111) surface. Phys Chem Chem Phys. 2025.
[98] Zhai P, Aireddy DR, Berko MB, Arshadi A, Zachman MJ, Cullen DA, Xu Y, Ding K. Anomalous role of carbon in Pd-catalyzed selective hydrogenation. Angewandte Chemie International Edition. 2025 Mar 3;64(10):e202421351.
[99] Hamblin, M.R., Upconversion in photodynamic therapy: plumbing the depths. Dalton Transactions, 2018. 47(26):8571-8580.
[100] Lin L, Song C, Wei Z, Zou H, Han S, Cao Z, Zhang X, Zhang G, Ran J, Cai Y, Han W. Multifunctional photodynamic/photothermal nano-agents for the treatment of oral leukoplakia. J Nanobiotechnol. 2022;20(1):106.
[101] Allaker, R.P. and C.W. and Ian Douglas, Non-conventional therapeutics for oral infections. Virulence, 2015. 6(3):196-207.
[102] Calciolari. The efficacy of adjunctive periodontal therapies during supportive periodontal care in patients with residual pockets. A systematic review and meta-analysis. J Periodontal Res. 2022. 57(4):671-689.
[103] Kaur H, Singh R, Sharma P, Verma A, Chawla S, Gupta N. Evaluation of curcumin gel as adjunct to scaling & root planing in management of periodontitis—randomized clinical & biochemical investigation. Infect Disord Drug Targets. 2019;19(2):171–178.
[104] Mitragotri S, Burke PA, Langer R, Sahni JK, Sharma G, et al. Accelerating the translation of nanomaterials in biomedicine. ACS Nano. 2015;9(7):6644–6654.
[105] Chaturvedi A, Kumar V, Singh R, Sharma P, et al. Revolutionizing periodontic care: Nano Dentistry’s impact on inflammation management. J Drug Deliv Sci Technol. 2024;99:105922.
[106] Singh AK, Mohapatra SS, Sharma P, Gupta N, et al. Chapter 15 - Engineering nanomaterials for smart drug release: Recent advances and challenges. In: Mohapatra SS, et al., editors. Applications of targeted nano drugs and delivery systems. Elsevier; 2019.411–449.
[107] Hulme J, Patel R, Singh R, Chen Y, et al. Application of nanomaterials in the prevention, detection, and treatment of methicillin-resistant staphylococcus aureus (MRSA). Pharmaceutics. 2022;14:0805.
[108] Laib I, Chen S, Zhang Y, Kumar P, et al. Cutting-edge nanotherapeutics: silver nanoparticles loaded with ciprofloxacin for powerful antidiabetic, antioxidant, anti-inflammatory, and antibiotic action against resistant pathogenic bacteria. Int J Food Sci Technol. 2025;60(1):vvaf024.
[109] Brooks BD, Brooks AE. Therapeutic strategies to combat antibiotic resistance. Adv Drug Deliv Rev. 2014;78:14–27.
[110] Rajkhowa S, Das P, Sharma V, Kumar A, et al. Advancing antibiotic-resistant microbe combat: Nanocarrier-based systems in combination therapy targeting quorum sensing. Pharmaceutics. 2024;16:1160.
[111] Wang Q, Li Y, Chen H, Zhang M, et al. Therapeutic applications of antimicrobial silver-based biomaterials in dentistry. Int J Nanomed. 2022;17:443–462.
[112] Fernandez CC, Smith J, Patel R, et al. Applications of silver nanoparticles in dentistry: Advances and technological innovation. Int J Mol Sci. 2021;22:2485.
[113] Marta B, Lopez M, Zhang X, et al. Designing chitosan–silver nanoparticles–graphene oxide nanohybrids with enhanced antibacterial activity against Staphylococcus aureus. Colloids Surf A Physicochem Eng Asp. 2015;487:113–120.
[114] Cinteza LO, Popescu C, Tanase C, et al. Chitosan-stabilized Ag nanoparticles with superior biocompatibility and their synergistic antibacterial effect in mixtures with essential oils. Nanomaterials. 2018;8:826.
[115] Heydari Foroushani P, Jamshidi F, Rezaei M, et al. Curcumin sustained release with a hybrid chitosan silk fibroin nanofiber containing silver nanoparticles as a novel highly efficient antibacterial wound dressing. Nanomaterials. 2022;12:3426.
[116] Alven S, Aderibigbe BA, du Toit LC, et al. Electrospun nanofibers/nanofibrous scaffolds loaded with silver nanoparticles as effective antibacterial wound dressing materials . Pharmaceutics. 2021;13:964.
[117] Takallu S, Sharma P, Singh A, et al. Addressing antimicrobial properties in guided tissue/bone regeneration membrane: Enhancing effectiveness in periodontitis treatment. ACS Infect Dis. 2024;10(3):779–807.
[118] Aksel H, Yilmaz B, Can S, et al. Antimicrobial activity and biocompatibility of antibiotic-loaded chitosan hydrogels as a potential scaffold in regenerative endodontic treatment. J Endod. 2020;46(12):1867– 1875.
[119] Chauhan A, Kumar V, Sharma R, et al. Silver-based nano-formulations for treating antibiotic-resistant microbial strains. In: Kumar V, et al., editors. Nano-Strategies for Addressing Antimicrobial Resistance. Springer; 2022. p. 279–309.
[120] Ibraheem DR, Ali S, Khan R, et al. Ciprofloxacin-loaded silver nanoparticles as potent nano-antibiotics against resistant pathogenic bacteria. Nanomaterials. 2022;12:2808.
[121] Ratan ZA, Kumar S, et al. Silver nanoparticles as potential antiviral agents. Pharmaceutics. 2021;13:2034.
[122] Pourali G, Mirzaei R, et al. Microbiome as a biomarker and therapeutic target in pancreatic cancer. BMC Microbiol. 2024;24:16.
[123] Hajipour MJ, Fromm KM, Ashkarran AA, et al. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012;30(10):499–511.
[124] Zhang Y, Li X, Wang J, et al. Engineering of near-infrared-activated lignin–polydopamine–nanosilver composites for highly efficient sterilization. ACS Appl Bio Mater. 2022;5(9):4256–4263.
[125] Zhang C, Li B, Zeng X, Hu X, Hua H. The global prevalence of oral leukoplakia: a systematic review and meta-analysis from 1996 to 2022. BMC Ora Heal. 2023;23(1):645.
[126] Han Q, Li Y, et al. Near-infrared light brightens bacterial disinfection: Recent progress and perspectives. ACS Appl Bio Mater. 2021;4(5):3937–3961.
[127] Rajan SS, Chandran R, Abrahamse H. Overcoming challenges in cancer treatment: Nano-enabled photodynamic therapy as a viable solution. WIREs Nanomed Nanobiotechnol. 2024;16(1):e1942.
[128] Park J, Lee H, Kim S, et al. Current limitations and recent progress in nanomedicine for clinically available photodynamic therapy. Biomedicines. 2021;9:1085.
[129] Rajan SS, Rahul C, Abrahamse H. Advancing photodynamic therapy with nano-conjugated hypocrellin: Mechanisms and clinical applications. Int J Nanomed. 2024;19:11023–11038.
[130] Shivanna AT, Dash BS, Chen J-P. Functionalized magnetic nanoparticles for alternating magnetic fieldor near infrared light-induced cancer therapies. Micromachines. 2022;13(8):1279.
[131] Zhang T, Wang Y. Enzyme and pH-responsive nanovehicles for intracellular drug release and photodynamic therapy. New J Chem. 2017;41(6):2468–2478.
[132] Andrew L, Smith J. Real-time photodynamic therapy monitoring with ultrasound-guided photoacoustic imaging. Proc SPIE. 2024.
[133] Chen T, Li X, Zhang Y. Dual activated NIR-II fluorescence and photoacoustic imaging-guided cancer chemo-radiotherapy using hybrid plasmonic-fluorescent assemblies. Nano Res. 2020;13(12):3268– 3277.
[134] Li M, Xiong J, Zhang Y, Yu L, Yue L, Yoon C, Kim Y, Zhou Y, Chen X, Xu Y, Peng X. New guidelines and definitions for type I photodynamic therapy. Chem Soc Rev. 2025.
[135] Lin L, Chen H. Multifunctional photodynamic/photothermal nano-agents for the treatment of oral leukoplakia. J Nanobiotechnol. 2022;20:106.
[136] Zhang S, Li Y, Chen X, Wang M, et al. Emerging photodynamic nanotherapeutics for inducing immunogenic cell death and potentiating cancer immunotherapy. Biomater. 2022;282:121433.
[137] Zhang G, Liu Y. Self-adjuvanting photosensitizer nanoparticles for combination photodynamic immunotherapy. Biomater Sci. 2021;9(20):6940–6949.
[138] Li Y, You J, Lv H, Wang C, Zhai S, Ren S, Liu X, Zhang Y, Zhou Y. 4D-printed dual-responsive bioscaffolds for treating critical-sized irregular bone defects. Chem Engi J. 2024;489:151205.
[139] Song H, Zhang Y, et al. Light triggered release of a triple action porphyrin-cisplatin conjugate evokes stronger immunogenic cell death for chemotherapy, photodynamic therapy and cancer immunotherapy. J Nanobiotechnol. 2022;20:329.
[140] Zhang Q, Wang L, et al. Photoactivatable prodrug-backboned polymeric nanoparticles for efficient light-controlled gene delivery and synergistic treatment of platinum-resistant ovarian cancer. Nano Lett. 2020;20(5):3039–3049.
[141] Liu X, Chen Y, Zhang H, Li W, Wang J, Zhao M. Nanoplatform-enhanced photodynamic therapy for the induction of immunogenic cell death. J Control Release. 2024;365:1058–1073.
[142] Liu Z, Li M, Xie Q, Liu Y, Huang J, Zeng Q, Li X, Rao K, Ning J, Zhao M, Li B. Eradicating fungal biofilm-based infections by ultrasound-assisted semiconductor sensitized upconversion photodynamic therapy. Nature Communicat. 2025;16(1):6499.
[143] Wang N, Li X, Chen Y, et al. ROS-responsive self-activatable photosensitizing agent for photodynamicimmunotherapy of cancer. Acta Biomater. 2023;164:511–521.
[144] Nishikawa D, Tanaka H, Yamada S, et al. Near-infrared photoimmunotherapy for oropharyngeal cancer. Cancers. 2022;14:5662.
[145] Nkune NW, Abrahamse H. Possible integration of artificial intelligence with photodynamic therapy and diagnosis: a review. J Drug Deliv Sci Technol. 2024;101:106210.
[146] Pan Q, Li H, Zhang Y, et al. Recent advances in phototherapeutic nanosystems for oral cancer. J Mater Chem B. 2024;12(45):11560–11572.
[147] Kirino I, Tanaka K, Saito Y, et al. Metronomic photodynamic therapy using an implantable LED device and orally administered 5-aminolevulinic acid. Sci Rep. 2020;10:22017.
[148] Suh H, Kim S, Lee J. Repeated irradiation by light-emitting diodes may impede the spontaneous progression of experimental periodontitis: a preclinical study. J Periodontal Implant Sci. 2022;53(2):120.
[149] Liu H, Wang Y, Zhang Z. Development and evaluation of a low-cost, portable, LED-based device for PDT treatment of early-stage oral cancer in resource-limited settings. Lasers Surg Med. 2019;51(4):345–351.
[150] Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat Rev Dis Primers. 2017;3:17038.
[151] Shahriar SMS, Li X, Chen Y, et al. Next-generation 3D scaffolds for nano-based chemotherapeutics delivery and cancer treatment. Pharmaceutics. 2022;14:2712.
[152] Etezadkeyhan P. Recent advances in regenerative endodontics: clinical applications and challenges. J Oral Dent Health Nexus. 2024;1(1):29–42.
[153] Chinnaiyan SK, Arthanari S, Subramanian M. Nanoparticles in tissue engineering application and regenerative medicine. In: Introduction to Functional Nanomaterials. CRC Press; 2024. p. 93–119.
[154] Percival KM, Paul V, Husseini GA. Recent advancements in bone tissue engineering: integrating smart scaffold technologies and bio-responsive systems for enhanced regeneration. Int J Mol Sci. 2024;25:6012.
[155] Qu M, Li J, Zhang Y, et al. Stimuli-responsive delivery of growth factors for tissue engineering. Adv Healthc Mater. 2020;9(7):1901714.
[156] Wei H, Chen X. Recent advances in smart stimuli-responsive biomaterials for bone therapeutics and regeneration. Bone Res. 2022;10:17.
[157] Fang CH, Liu Y, Li J. Metformin-incorporated gelatin/nano-hydroxyapatite scaffolds promotes bone regeneration in critical size rat alveolar bone defect model. Int J Mol Sci. 2022;23:558.
[158] Sahu B, Singh N, Paul S, Banerjee S. Multi-responsive 4D-printed soft active material toward shapereconfigurable actuators. Small. 2025:e08079.
[159] Khan MA, Li Y. A review on biomaterials for 3D conductive scaffolds for stimulating and monitoring cellular activities. Appl Sci. 2019;9:961.
[160] Elsayed MA, Ahmed T, Abdel-Wahab BA. Biocompatibility of dental nanomaterials: current status and future perspectives. J Dent Res. 2023;102(12):1456–1468.
[161] Gyal AK Passeri D, Rossi G, Bianchi F, et al. Biomedical applications of nanodiamonds: an overview. J Nanosci Nanotechnol. 2015;15(2):972–88.
[162] Zhang C, Cai D, Liao P, Su JW, Deng H et. al. 4D Printing of shape-memory polymeric scaffolds for adaptive biomedical implantation. Acta Biomate. 2021;122:101-110.
[163] Pandey M, Singh R. Mucoadhesive nanocarriers as a promising strategy to enhance intracellular delivery against oral cavity carcinoma. Pharmaceutics. 2022;14:40795.
[164] Wu Y, Wang X, Song L, Zhao Z, Xia Y, Tang K, Wang H, Liu J, Wang Z. Tuning macrophage phenotype for enhancing patency rate and tissue regeneration of vascular grafts. Acta Biomater. 2025.
[165] Luo G, Li J. Tailoring osteo-immunomodulatory micro-environments via a bioactive 3D PLA scaffold to potentiate regenerative healing. Colloids Surf B Biointerfaces. 2025;253:114711.
[166] Ganguly K, Luthfikasari R, Randhawa A, Dutta SD, Patil TV, Acharya R, Lim KT. Stimuli-mediated macrophage switching, unraveling the dynamics at the nanoplatforms–macrophage interface. Adva Heal Mater. 2024;13(20):2400581.
[167] Xing Z, Liu J, Cai J, Jiang X, Liang J, Fujio M, Hadler-Olsen E, Wang J, Kantarci A, Xue Y. The application of resolvin D1-loaded gelatin methacrylate in a rat periodontitis. Pharmaceutics. 2024;17(1):16.
[168] Sakhare K, Bhattacharya D, Dhiman C, Erukulla P, Bhattacharya S, Ansari A, Khandelia P, Eanti A, Banerjee R, Narayan KP. Glucocorticoid receptor-mediated delivery of paclitaxel and anticancer gene p53 for oral cancer therapeutics. Biomed Mater. 2025.
[169] Rabiee N, Rabiee M. Engineered metal–organic frameworks for targeted CRISPR/Cas9 gene editing. ACS Pharmacol Transl Sci. 2025;8(4):1028–1049.
[170] Dubey AK, Mostafavi E. Biomaterials-mediated CRISPR/Cas9 delivery: recent challenges and opportunities in gene therapy. Front Chem. 2023;11:987.
[171] Vafa E, Tayebi L, Azizli F, Parham S, Rezaeeparto K, Azadi S, Amani AM, Azizli MJ, Kamyab H, Chelliapan S, Rajendran S. EEffect of bioactive glass on PXDDA/PXDDA-co-pla nanocomposite for hard tissue reconstruction: Synthesis and characterization. J Mater Res Technol. 2025;36:4773-85.
[172] Guazzo R, Bressan E, Ferroni L, et al. Graphene-based nanomaterials for tissue engineering in the dental field. Nanomaterials (Basel). 2018;8(5):330.
[173] Woo HN, Kim S. The recent advances in scaffolds for integrated periodontal regeneration. Bioact Mater. 2021;6(10):3328–3342.
[174] Kaewmalun S. Development of nanostructured lipid carrier clove oil as anesthetic agent in white shrimp (Litopenaeus vannamei).2020.
[175] Schug SA, Palmer GM, Scott DA, et al. Neuraxial drug administration. CNS Drugs. 2006;20(11):917–933.
[176] Moradkhani MR, Karimi A, Negahdari B. Nanotechnology application to local anaesthesia (LA). Artif Cells Nanomed Biotechnol. 2018;46(2):355–360.
[177] Shadjou N, Hasanzadeh M, Ali N, et al. Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances. J Biomed Mater Res A. 2016;104(5):1250–75.
[178] Hao J, Zakershahrak M, Ozer F, Chen C. pH-responsive ZIF-8 precisely induces apoptosis of oral squamous cell carcinoma over orofacial mesenchymal stem/stromal cells. J Oral Maxillofacial Surg. 2025;83(9):S40-1.
[179] Li L, Zang J, Shen W, Fang C, Zhang Y, Chen L, Wang Q, Wan B, Zhang Z. Disordered graphitized carbon materials with superior electrical and mechanical properties. Ceramics Internat. 2025.
[180] Ye YL, Liu L. Engineering the future of nanomedicine: Strategic approaches to extracellular vesiclebased drug administration regimens. Worl J Stem Cell. 2025;17(7):107080.
[181] Saha A, Shetty A, Gowda AD, Manikkath A, Mathew J, Radhakrishnan R, Manikkath J. Advances in oncolytic viruses for the treatment of oral squamous cell carcinoma: Mechanisms, therapeutic potential, and challenges. J Drug Deli Sci Technol. 2025:107449.
[182] Shen SJ, Li Y, Zhang H, Wang J, Zhao M, Chen X. Fabrication of ropivacaine/dexamethasone-eluting poly(D, L-lactide-co-glycolide) microparticles via electrospraying technique for postoperational pain control. Polymers. 2022;14:40702.
[183] Zhang X, Li Y, Chen H, et al. Tetrodotoxin: the state-of-the-art progress in characterization, detection, biosynthesis, and transport enrichment. Mar Drugs. 2024;22:120531.
[184] Lopes FF, Silva R, et al. Hydroxyapatite-coated liposomes for the controlled release of quantum dots and bupivacaine. J Mater Res. 2021;36(14):3021–3030.
[185] Yang H, Li Y, Zhang X, et al. TET1-lipid nanoparticle encapsulating morphine for specific targeting of peripheral nerve for pain alleviation. Int J Nanomed. 2024;19:4759–4777.
[186] Lieblich SE, Danesi H. Liposomal bupivacaine use in third molar impaction surgery: INNOVATE study. Anesth Prog. 2020;67(4).
[187] Li T, Zhang Y, Wang J, et al. Mucoadhesive in situ forming gel for oral mucositis pain control. Int J Pharm. 2020;580:119238.
[188] Abbas R, Bashir S. Role of nanotechnology in overcoming the challenges faced in oral cancer diagnosis and treatment: A narrative review. J Clin Insi Res Dent. 2025;1(2):89-94.
[189] Shin GR, Kim S, et al. Advances in injectable in situ-forming hydrogels for intratumoral treatment. Pharmaceutics. 2021;13:1953.
[190] Younis MA, Li X, et al. Clinical translation of nanomedicines: Challenges, opportunities, and keys. Adv Drug Deliv Rev. 2022;181:114083.
[191] Shid-Moosavi TS, et al. Evaluating antimicrobial activity and cytotoxicity of silver nanoparticles incorporated into reinforced zinc oxide eugenol: an in vitro study. Eur Arch Paediatr Dent. 2024;25(3):443–450.
[192] Cierech M, et al. Zinc oxide nanoparticles cytotoxicity and release from newly formed PMMA–ZnO nanocomposites designed for denture bases. Nanomaterials. 2019;9(9):1318.
[193] Bourgi R, et al. Exploring the role of nanoparticles in dental materials: A comprehensive review. Coatings. 2025;15:33.
[194] Jandt KD, Watts DC. Nanotechnology in dentistry: Present and future perspectives on dental nanomaterials. Dent Mater. 2020;36(11):1365–1378.
[195] Shashirekha G, Jena A, Mohapatra S. Nanotechnology in dentistry: Clinical applications, benefits, and hazards. Compend Contin Educ Dent. 2017;38(5):e1–e4.
[196] Belibasakis GN. Applications of the oral microbiome in personalized dentistry. Arch Oral Biol. 2019;104:7–12.
[197] Abou Neel EA. Nanotechnology in dentistry: Prevention, diagnosis, and therapy. Int J Nanomed. 2015;10:6371–6394.
[198] Bonilla-Represa V, et al. Nanomaterials in dentistry: State of the art and future challenges. Nanomaterials. 2020;10:1770.
[199] Natarajan D. Rare earth smart nanomaterials for bone tissue engineering and implantology: Advances, challenges, and prospects. Bioeng Transl Med. 2022;7(1):e10262.
[200] Pinho SS, Reis RL, Oliveira JM. Toxicological concerns of metallic nanoparticles: Silver, zinc oxide, and gold in oral applications. Mater Today Bio. 2024;20:100575.
[201] Sahoo S, Mohanty S, Nayak SK. Stability challenges of nanoparticles for dental drug delivery. J Mater Sci Mater Med. 2023;34:124.
[202] Chen X, Li H, Wang Y. Manufacturing hurdles in scaling up nanoparticle-based dental therapeutics. Int J Pharm. 2024;618:121632.
[203] Kaur M, Sharma V. Regulatory landscape for nanomaterials in dentistry: Global overview and challenges. Nanomed (Lond). 2023;18(22):1785–1797.
[204] Li J, Zhou Y, Sun H. Stimuli-responsive nanocarriers in oral conditions: pH, enzymes, and microbiota considerations. Biomaterials. 2024;310:121365.
[205] Kumar V, Sharma P, Yadav S. Patient variability and personalized nanomedicine in dentistry. J Clin Med. 2023;12(16):5501.
[206] Azadi S, Azizipour E, Amani AM, Vaez A, Zareshahrabadi Z, Abbaspour A, et.al. Antifungal activity of Fe3O4@ SiO2/Schiff-base/Cu (II) magnetic nanoparticles against pathogenic Candida species. Sci Rep. 2024;14(1):5855.
[207] Shivanna AT, Dash BS, Chen J-P. Functionalized magnetic nanoparticles for alternating magnetic fieldor near infrared light-induced cancer therapies. Micromachines. 2022;13(8):1279.
[208] Gupta PK. Nanotoxicology in nanobiomedicine. Springer International Publishing; 2023.