Advances in Applied Nano-Bio Technologies
ISSN: 2710-4001
The latest research in nano-biotechnology
Biohybrid Nanomaterials in Biomedicine: Current Trends and Future Prospects
Published date: Oct 27 2025
Journal Title: Advances in Applied Nano-Bio Technologies
Issue title: Advances in Applied Nano-Bio Technologies: Volume 6 Issue 3
Pages: 1 - 22
Authors:
Abstract:
The integration of biohybrid nanomaterials into dentistry represents a transformative approach to oral healthcare, offering tissue-mimetic solutions for oral health care. These advanced materials, including hydroxyapatite-based nanoparticles, bioactive glass, nanocellulose, peptide-based systems, and carbon-based nanomaterials, enable targeted therapies for enamel remineralization, dentin regeneration, antimicrobial action, and mechanical reinforcement of dental restorations. By leveraging their unique properties, such as biocompatibility, bioactivity, and stimuli-responsiveness, biohybrid nanomaterials address limitations of traditional dental materials, such as poor durability and lack of regenerative capabilities. This review highlights current applications in preventive and therapeutic dentistry, explores challenges related to scalability and safety, and discusses prospects for personalized and sustainable dental care.
Keywords: nanomaterials, artificial intelligence, nano-manufacturing, biotechnology, tissue engineering
References:
[1] Mousavi SM, Hashemi SA, Fallahi Nezhad F, Binazadeh M, Dehdashtijahromi M, Omidifar N, et al. Innovative metal-organic frameworks for targeted oral cancer therapy: a review. Materials (Basel). 2023;16(13):4685.
[2] Moazami F, Shokouhinejad N, Hosseini M, Mobaraki F, Shamshiri AR. Evaluation of the antibacterial and antifungal effects of ProRoot MTA and nano-fast cement: an in vitro study. J Contemp Dent Pract. 2020;21(7):760-4.
[3] Abbaszadegan A, Nabavizadeh M, Gholami A, Aleyasin ZS, Dorostkar S, Moein MR, et al. In vitro evaluation of dynamic viscosity, surface tension and dentin wettability of silver nanoparticles as an irrigation solution. Iran Endod J. 2019;14(1):23-7.
[4] Nabavizadeh MR, Abbaszadegan A, Gholami A, Aleyasin ZS, Sadeghi S, Baghban AA, et al. Cytotoxic effect of nano fast cement and ProRoot mineral trioxide aggregate on L-929 fibroblast cells: an in vitro study. J Dent (Shiraz). 2022;23(1):13-9.
[5] Adl A, Shojaee NS, Pourhajibagher M, Shokouhinejad N, Hashemipour MA, Asgary S. Effect of a new imidazolium-based silver nanoparticle irrigant on the bond strength of epoxy resin sealer to root canal dentine. Iran Endod J. 2019;14(2):122-5.
[6] Yazdanian M, Rostamzadeh P, Rahbar M, Tahmasebi E, Yazdanian A, Ranjbar R, et al. Current and advanced nanomaterials in dentistry as regeneration agents: an update. Mini Rev Med Chem. 2021;21(7):899-918.
[7] Hannig M, Hannig C. Nanomaterials in preventive dentistry. Nat Nanotechnol. 2010;5(8):565-9.
[8] Al-Hetty H, Aslam A, Nazir I, Shahid M, Barakat NA. Implications of biomimetic nanocarriers in targeted drug delivery. Emerg Mater. 2023;6(1):1-13.
[9] Elkassas D, Arafa A. The innovative applications of therapeutic nanostructures in dentistry. Nanomed. 2017;13(4):1543-62.
[10] Dai D, Li D, Zhang C. Unraveling nanomaterials in biomimetic mineralization of dental hard tissue: focusing on advantages, mechanisms, and prospects. Adv Sci (Weinh). 2024;11(40):e2405763.
[11] Kim SK, Murugan SS, Dalavi PA, Gupta S, Anil S, Seong GH, et al. Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration. Beilstein J Nanotechnol. 2022;13:1051–1067.
[12] Seredin P, Rizhov I, Terpilowski M, Abalmasov N, Yaminsky I, et al. Compositional analysis of the dental biomimetic hybrid nanomaterials based on bioinspired nonstoichiometric hydroxyapatite with small deviations in the carbonate incorporation. Nanomaterials (Basel). 2022;12(24).
[13] Funda G, Yilmaz S, Toy E, et al. Nanotechnology scaffolds for alveolar bone regeneration. Mater (Basel). 2020;13(1).
[14] Inchingolo F, Inchingolo AM, Latini G, Palmieri G, Di Pede C, Trilli I, et al. Application of graphene oxide in oral surgery: a systematic review. Mater (Basel). 2023;16(18):6293.
[15] Li G, Zhang Q, Chen L, et al. Nanomaterials for craniofacial and dental tissue engineering. J Dent Res. 2017;96(7):725–732.
[16] Ming P, Li X, Zhao J, Liu Y, Huang C, Zheng X, et al. Biomimetic design and fabrication of sericin– hydroxyapatite based membranes with osteogenic activity for periodontal tissue regeneration. Front Bioeng Biotechnol. 2022;10:899293.
[17] Rosenholm JM, Sahlgren C, Linden M, Laaksonen P, et al. Nanodiamond-based composite structures for biomedical imaging and drug delivery. J Nanosci Nanotechnol. 2015;15(2):959–971.
[18] Nobre CMG, Perez RA, de Oliveira PT, et al. Hydroxyapatite-based solution as adjunct treatment for biofilm management: an in situ study. Nanomaterials (Basel). 2021;11(9).
[19] Sengar P, Chauhan K, Hirata GA, et al. Progress on carbon dots and hydroxyapatite-based biocompatible luminescent nanomaterials for cancer theranostics. Transl Oncol. 2022;24:101482.
[20] Verma R, Sharma A, Tripathi S, Singh AK, Singh T, et al. Hydroxyapatite-based composites: excellent materials for environmental remediation and biomedical applications. Adv Colloid Interface Sci. 2023;315:102890.
[21] Ajduković ZR, Janković S, Milinković M, Živković S, Živković V, Barac R, et al. In vitro evaluation of nanoscale hydroxyapatite-based bone reconstructive materials with antimicrobial properties. J Nanosci Nanotechnol. 2016;16(2):1420-8.
[22] Hassanain M, Al-Abbas FM, Alsalhy QF, Aljlil SA, Almousa AA, Al-Furaiji M, et al. Enhanced antimicrobial efficacy of hydroxyapatite-based composites for healthcare applications. Sci Rep. 2024;14(1):26426.
[23] Moazzami F, Shahsavan S, Babanouri N, Darrudi H, Mokhtari H. A histological comparison of a new pulp capping material and mineral trioxide aggregate in rat molars. Iran Endod J. 2014;9(1):50-5.
[24] Radulescu DE, Grumezescu AM, Holban AM, Iordache F, Andronescu E. Novel trends into the development of natural hydroxyapatite-based polymeric composites for bone tissue engineering. Polym (Basel). 2022;14(5):905.
[25] Tithito T, Kaewjang S, Samran J, Chotitumnavee J, Kaewsrichan J, Kaewtatip K, et al. Development of biomaterials based on biomimetic trace elements co-doped hydroxyapatite: physical, in vitro osteoblast-like cell growth and in vivo cytotoxicity in zebrafish studies. Nanomaterials (Basel). 2023;13(2):267.
[26] Kruse A, Jung RE, Nicholls F, Zwahlen RA, Hämmerle CH, Lang NP. Bone regeneration in the presence of a synthetic hydroxyapatite/silica oxide-based and a xenogenic hydroxyapatite-based bone substitute material. Clin Oral Implants Res. 2011;22(5):506-11.
[27] Hashemi N, Shokrgozar MA, Eftekhari Y, Arasteh S, Tahriri M, Tayebi L. A novel fluorescent hydroxyapatite based on iron quantum cluster template to enhance osteogenic differentiation. Mater Sci Eng C Mater Biol Appl. 2020;111:110775.
[28] Chen M, Wang L, Xu X, Zhao X, Zhang H, Zhang Y, et al. Multifunctional bioactive glass nanoparticles: surface-interface decoration and biomedical applications. Regen Biomater. 2024;11:rbae110.
[29] Vichery C, Nedelec JM. Bioactive glass nanoparticles: from synthesis to materials design for biomedical applications. Mater (Basel). 2016;9(4):288.
[30] Pajares-Chamorro N, Sánchez-Salcedo S, Vallet-Regí M. Silver-releasing bioactive glass nanoparticles for infected tissue regeneration. Biomater Adv. 2023;154:213656.
[31] Nam HJ, Kim YM, Kwon YH, Yoo KH, Yoon SY, Kim IR, Park BS, Son WS, Lee SM, Kim YI. Fluorinated bioactive glass nanoparticles: enamel demineralization prevention and antibacterial effect of orthodontic bonding resin. Mate. 2019 Jun 4;12(11):1813.
[32] Hosseinpour S, Gomez-Cerezo MN, Cao Y, Lei C, Dai H, Walsh LJ, et.al. A comparative study of mesoporous silica and mesoporous bioactive glass nanoparticles as non-viral MicroRNA vectors for osteogenesis. Pharmaceutics. 2022;14(11):2302.
[33] Semino CE. Self-assembling peptides: from bio-inspired materials to bone regeneration. J Dent Res. 2008;87(7):606–16.
[34] Najeeb S, Khurshid Z, Zafar MS, Khan AS, Zohaib S, Martí JM, Sauro S, Matinlinna JP, Rehman IU. Modifications in glass ionomer cements: nano-sized fillers and bioactive nanoceramics. Int J Molec Sci. 2016;17(7):1134.
[35] Abdelaziz H, Mahran AH, Elsewify T. Osteogenic differentiation and proliferation of apical papilla stem cells using nanoparticles of neo MTA and bioactive glass. Saudi Dent J. 2024;36(1):134–9.
[36] Dreanca A, Bogdan S, Popescu A, Sand D, Pall E, Astilean AN, Pestean C, et.al. The evaluation of the osteopromoting capabilities of composites based on biopolymers and gold/silver nanoparticles doped bioactive glasses on an experimental rat bone defect. Biomed Mat. 2023;18(5):055014.
[37] Su S, Xie J, Gao J, Liu S, Dong X, Li J, Gao ZF, Chen K, Liu W. A bone adhesive enhances osteoporotic fracture repair by regulating bone homeostasis. NPG Mat. 2024;16(1):21.
[38] Zhang Y, Jiang S, Xu D, Li Z, Guo J, Li Z, Cheng G. Application of nanocellulose-based aerogels in bone tissue engineering: current trends and outlooks. Basel. 2023;16;15(10):2323.
[39] Yahya EB, Jummaat F, Amirul AA, Adnan AS, Olaiya NG, Abdullah CK, et.al. A review on revolutionary natural biopolymer-based aerogels for antibacterial delivery. Antibiotics Basel. 2020;9(10):648.
[40] Silva AC, Silvestre AJ, Vilela C, Freire CS. Cellulose and protein nanofibrils: Singular biobased nanostructures for the design of sustainable advanced materials. Front in Bioeng and Biotechnol. 2022;10:1059097.
[41] Yuan H, Chen L, Hong FF, Li X, Wang S, Zhao Y, et al. A biodegradable antibacterial nanocomposite based on oxidized bacterial nanocellulose for rapid hemostasis and wound healing. ACS Appl Mater Interfaces. 2020;12(3):3382–92.
[42] Kheirallah M, Almeshaly H. Bone graft substitutes for bone defect regeneration. A collective review. Int J Dent Oral Sci. 2016 May 16;3(5):247-57.
[43] Kulkarni S, Prabhakar B, Shende P. Nanodiamond-based berberine aquasomes for enhancing penetration across epidermis to treat psoriasis. International Journal of Pharmaceutics. 2024 May 10;656:124051.
[44] Karimi Y, Rahimi M, Mousavi SM, Asgari F, Samadi N, et al. Biofilm targeting with chitosan-based nanohydrogel containing Quercus infectoria G. Olivier extract against Streptococcus mutans: new formulations of a traditional natural product. BMC Complement Med Ther. 2024;24(1):398.
[45] Suh JK, Matthew HW. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials. 2000;21(24):2589–98.
[46] Qasim SB, Saleem M, Riaz S, Shahid M, Aslam A, et al. Electrospinning of chitosan-based solutions for tissue engineering and regenerative medicine. Int J Mol Sci. 2018;19(2):399.
[47] Lazaridou M, Bikiaris DN, Lamprou DA, et al. 3D bioprinted chitosan-based hydrogel scaffolds in tissue engineering and localised drug delivery. Pharmaceutics. 2022;14(9):1842.
[48] Tan L, Wang H, Liu Y, et al. Peptide-based nanomaterials: self-assembly and applications. Mini Rev Med Chem. 2023;23(4):399–411.
[49] Li L, Ma B, Wang W, et al. Peptide-based nanomaterials for tumor immunotherapy. Molecules. 2020;26(1):120.
[50] Das TN, Kumar R, Singh R, et al. Peptide-based nanomaterials and their diverse applications. Nanoscale Horiz. 2025;10(2):279–93.
[51] Pugliese R, Ruiu A, Del Gaudio C, Piras AM, Marceddu S, Cossu A, et al. Self-assembling peptides crosslinked with genipin: resilient hydrogels and self-standing electrospun scaffolds for tissue engineering applications. Biomater Sci. 2018;7(1):76–91.
[52] Sequeira DB, Ribeiro-Silva F, Soares J, Costa R, Oliveira C, et al. Scaffolds for dentin-pulp complex regeneration. Medicina (Kaunas). 2023;60(1):56.
[53] Semino CE. Self-assembling peptides: from bio-inspired materials to bone regeneration. J Dent Res. 2008;87(7):606–16.
[54] Lu J, Wang X, Li Y, Zhang Q, Chen L, et al. Biomimetic self-assembling peptide hydrogels for tissue engineering applications. Adv Exp Med Biol. 2018;1064:297–312.
[55] Vafa E, Ghiasi M, Alipour H, Khorasani M, et al. Effect of bioactive glass on PXDDA/PXDDA-co-PLA nanocomposite for hard tissue reconstruction: synthesis and characterization. J Mater Res Technol. 2025;36:4773–85.
[56] Sanchez C, Shea KJ, Kitagawa S. Recent progress in hybrid materials science. Chem Soc Rev. 2011;40(2):471-2.
[57] Lee DK, Ryu JH, Park J, Kim H, et al. Clinical validation of a nanodiamond-embedded thermoplastic biomaterial. Proc Natl Acad Sci U S A. 2017;114(45):E9445–54.
[58] Passeri D, Rossi G, Bianchi F, et al. Biomedical applications of nanodiamonds: an overview. J Nanosci Nanotechnol. 2015;15(2):972–88.
[59] Lee DK, Ryu JH, Park J, Kim H, Song Y, et al. Nanodiamond-gutta percha composite biomaterials for root canal therapy. ACS Nano. 2015;9(11):11490–501.
[60] Li Y, Zhang H, Wang J, Liu X, Chen L, et al. Polydopamine-mediated graphene oxide and nanohydroxyapatite-incorporated conductive scaffold with an immunomodulatory ability accelerates periodontal bone regeneration in diabetes. Bioact Mater. 2022;18:213–27.
[61] Kim J, Lee G, Chang WS, hyoung Ki S, Park JC. Comparison and contrast of bone and dentin in genetic disorder, morphology and regeneration: A review. J Bone Metabol. 2021 Feb 28;28(1):1.
[62] Wu X, Peng W, Liu G, Wang S, Duan B, Yu J, Yang H, Huang C. Extrafibrillarly demineralized dentin matrix for bone regeneration. Adv Heal Mater. 2023 May;12(12):2202611.
[63] Yang J, Yuan G, Chen Z. Pulp regeneration: current approaches and future challenges. Frontiers in physiology. 2016 Mar 7;7:58.
[64] Chmilewsky F, Jeanneau C, Laurent P, About I. Pulp fibroblasts synthesize functional complement proteins involved in initiating dentin–pulp regeneration. The Americ J pathol. 2014 Jul 1;184(7):1991- 2000.
[65] Williams AG, Smith J, Jones R, Patel R, et al. Graphene-based materials in dental applications: antibacterial, biocompatible, and bone regenerative properties. Int J Biomater. 2023;2023:8803283.
[66] Guazzo R, Bressan E, Ferroni L, et al. Graphene-based nanomaterials for tissue engineering in the dental field. Nanomaterials (Basel). 2018;8(5):330.
[67] Sindi AM, Almutairi FA, Alharthi SS, et al. Applications of graphene oxide and reduced graphene oxide in advanced dental materials and therapies. J Taibah Univ Med Sci. 2024;19(2):403–21.
[68] Tahriri M, Shafiei F, Moztarzadeh F, et al. Graphene and its derivatives: opportunities and challenges in dentistry. Mater Sci Eng C Mater Biol Appl. 2019;102:171–85.
[69] Shadjou N, Hasanzadeh M, Ali N, et al. Graphene and its nanostructure derivatives for use in bone tissue engineering: recent advances. J Biomed Mater Res A. 2016;104(5):1250–75.
[70] Mukherjee P, Singh I. Nanodiamonds: Advanced carriers for anticancer drug delivery. Acta Pharmaceutica Hungarica. 2023 Jul 23;93:34-44.
[71] Cui S, Liu H, Cui G. Nanoparticles as drug delivery systems in the treatment of oral squamous cell carcinoma: current status and recent progression. Front Pharmacol. 2023;14:3.
[72] Greenstein G, Carpentieri JR. Utilization of d-PTFE barriers for post-extraction bone regeneration in preparation for dental implants. compendium. 2015 Jul 1.
[73] Zhang Y, Li H, Wang X, et al. Application of nanocellulose-based aerogels in bone tissue engineering: current trends and outlooks. Polym (Basel). 2023;15(10):2345.
[74] Meloni SM, Jovanovic SA, Urban I, Baldoni E, Pisano M, Tallarico M. Horizontal ridge augmentation using GBR with a native collagen membrane and 1: 1 ratio of particulate xenograft and autologous bone: a 3-year after final loading prospective clinical study. Clini impl dent rel res. 2019 Aug;21(4):669-77.
[75] Wang P, Su W, Ding X. Control of nanodiamond-doxorubicin drug loading and elution through optimized compositions and release environments. Diamond and Rel Mater. 2018 Sep 1;88:43-50.
[76] Gopalan AI, Komathi S, Anand GS, Lee KP. Nanodiamond based sponges with entrapped enzyme: a novel electrochemical probe for hydrogen peroxide. Biosensors and Bioelectronics. 2013 Aug 15;46:136-41.
[77] Akilal N, Lemaire F, Bercu NB, Sayen S, Gangloff SC, Khelfaoui Y, Rammal H, Kerdjoudj H. Cowries derived aragonite as raw biomaterials for bone regenerative medicine. Mater Sci and Engin: C. 2019 Jan 1;94:894-900.
[78] Soe ZC, Wahyudi R, Mattheos N, Lertpimonchai A, Everts V, Tompkins KA, et al. Application of nanoparticles as surface modifiers of dental implants for revascularization/regeneration of bone. BMC Oral Health. 2024;24(1):1175.
[79] Zhai P, Aireddy DR, Berko MB, Arshadi A, Zachman MJ, Cullen DA, Xu Y, Ding K. Anomalous role of carbon in Pd-catalyzed selective hydrogenation. Angewandte Chemie International Edition. 2025;64(10):e202421351.
[80] Hossain MR, Arshadi A, Xu Y, Trenary M. Structure of chemisorbed 1, 3-butadiene on the Cu (111) surface. Physical Chemistry Chemical Physics. 2025.
[81] Blackman LD, Oo ZY, Qu Y, Gunatillake PA, Cass P, Locock KE. Antimicrobial honey-inspired glucoseresponsive nanoreactors by polymerization-induced self-assembly. ACS applied materials & interfaces. 2020 Feb 11;12(10):11353-62.
[82] Allarà C, Orlando A, Ciccone G, Krik S, Pompilio M, Pedrielli A, Gaiardo A, et.al. Conjugated polymer nanoparticles for biophotonic applications: Preparation, characterization, and simulation in biohybrid interfaces. Adv Elect Mater. 2025 Apr 9:2500073.
[83] Nguyen HA, Darwish S, Pham HN, Ammar S, Ha-Duong NT. Gold and iron oxide nanoparticle assemblies on turnip yellow mosaic virus for in-solution photothermal experiments. Nanomater. 2023 Sep 7;13(18):2509.
[84] Azadi S, Amani AM, Jangjou A, Vaez A, Zareshahrabadi Z, Zare A, et.al. Fe3O4@ SiO2/Schiff-base/Zn (II) nanocomposite functioning as a versatile antimicrobial agent against bacterial and fungal pathogens. Sci Rep. 2025 Feb 17;15(1):5694.