Sudan Journal of Medical Sciences
ISSN: 1858-5051
High-impact research on the latest developments in medicine and healthcare across MENA and Africa
Short Telomere Length in Plasma of Sudanese Patients with Hepatocellular Carcinoma and Chronic Liver Diseases
Published date: Dec 31 2024
Journal Title: Sudan Journal of Medical Sciences
Issue title: Sudan JMS: Volume 19 (2024), Issue No. 4
Pages: 460 – 472
Authors:
Abstract:
Background: Telomeres, a protective sequence of DNA at the end of chromosomes, are essential for the maintenance of chromosomal integrity and stability. With each cell division, telomeres are shortened until a critical length is reached. Several cancers have been linked to shortened telomere length (TL). The current cross-sectional study aims to investigate the TL in the plasma of Sudanese patients with hepatocellular carcinoma (HCC) and chronic liver diseases (CLD).
Methods: Blood samples were obtained from 113 patients with HCC and CLD as well as from 50 healthy controls. The assessment of TL in blood samples was carried out using the relative quantitative PCR method.
Results: Patients with HCC had significantly shorter TL than healthy controls (0.66 vs 0.89; P < 0.01), whereas insignificant shorter TL was detected in HCC patients as compared to those with CLD. A significant decrease in telomeres copy numbers was observed in HCC patients when compared to those with CLD (P < 0.01).
Conclusion: The results of the present study demonstrate that TL is shorter in patients with HCC and CLD compared to healthy controls.
Keywords: telomere’s length, telomeres copy numbers, hepatocellular carcinoma, CLD, Sudan
References:
[1] Wan, S., Hann, H.-W., Ye, Z., Hann, R. S., Lai, Y., Wang, C., Li, L., Myers, R. E., Li, B., Xing, J., & Yang, H. (2017). Prospective and longitudinal evaluations of telomere length of circulating DNA as a risk predictor of hepatocellular carcinoma in HBV patients. Carcinogenesis, 38(4), 439–446. https://doi.org/10.1093/carcin/bgx021
[2] Zeng, H., Wu, H. C., Wang, Q., Yang, H. I., Chen, C. J., Santella, R. M., & Shen, J. (2017). Telomere length and risk of hepatocellular carcinoma: A nested case-control study in Taiwan Cancer Screening Program Cohort. Anticancer Research, 37(2), 637– 644. https://doi.org/10.21873/anticanres.11358
[3] Ma, Q., Cai, J., Cai, Y., Xu, Y., Chang, F., Xu, L., Zhang, G., & Guo, X. (2016). Association of telomere length in peripheral leukocytes with chronic hepatitis B and hepatocellular carcinoma. Medicine, 95(39), e4970. https://doi.org/10.1097/MD.0000000000004970
[4] Bonnell, E., Pasquier, E., & Wellinger, R. J. (2021). Telomere replication: Solving multiple end replication problems. Frontiers in Cell and Developmental Biology, 9, 668171. https://doi.org/10.3389/fcell.2021.668171
[5] Srinivas, N., Rachakonda, S., & Kumar, R. (2020). Telomeres and telomere length: A general overview. Cancers, 12(3), 558. https://doi.org/10.3390/cancers12030558
[6] Fu, X., Wan, S., Hann, H. W., Myers, R. E., Hann, R. S., Au, J., Chen, B., Xing, J., & Yang, H. (2012). Relative telomere length: A novel non-invasive biomarker for the risk of non-cirrhotic hepatocellular carcinoma in patients with chronic hepatitis B infection. European Journal of Cancer, 48(7), 1014– 1022. https://doi.org/10.1016/j.ejca.2012.02.066
[7] Bernal, A., & Tusell, L. (2018). Telomeres: Implications for cancer development. International Journal of Molecular Sciences, 19(1), 294. https://doi.org/10.3390/ijms19010294
[8] Mirabello, L., Garcia-Closas, M., Cawthon, R., Lissowska, J., Brinton, L. A., Pepłońska, B., Sherman, M. E., & Savage, S. A. (2010). Leukocyte telomere length in a population-based case-control study of ovarian cancer: A pilot study. Cancer Causes & Control, 21(1), 77–82. https://doi.org/10.1007/s10552-009-9436-6
[9] Herrmann, M., Pusceddu, I., März, W., & Herrmann, W. (2018). Telomere biology and age-related diseases. Clinical Chemistry and Laboratory Medicine, 56(8), 1210–1222. https://doi.org/10.1515/cclm-2017- 0870
[10] Durant, S. T. (2012). Telomerase-independent paths to immortality in predictable cancer subtypes. Journal of Cancer, 3, 67–82. https://doi.org/10.7150/jca.3965
[11] In der Stroth, L., Tharehalli, U., Günes, C., & Lechel, A. (2020). Telomeres and telomerase in the development of liver cancer. Cancers, 12(8), 2048. https://doi.org/10.3390/cancers12082048
[12] Srinivas, N., Rachakonda, S., & Kumar, R. (2020). Telomeres and telomere length: A general overview. Cancers, 12(3), 558. https://doi.org/10.3390/cancers12030558
[13] Ojeda-Rodríguez, A., Zazpe, I., Alonso-Pedrero, L., Zalba, G., Guillen-Grima, F., Martinez-Gonzalez, M. A., & Marti, A. (2020). Association between diet quality indexes and the risk of short telomeres in an elderly population of the SUN project. Clinical Nutrition, 39(8), 2487–2494. https://doi.org/10.1016/j.clnu.2019.11.003
[14] Barnes, R. P., Fouquerel, E., & Opresko, P. L. (2019). The impact of oxidative DNA damage and stress on telomere homeostasis. Mechanisms of Ageing and Development, 177, 37–45. https://doi.org/10.1016/j.mad.2018.03.013
[15] Astuti, Y., Wardhana, A., Watkins, J., Wulaningsih, W., & the PILAR Research Network. (2017). Cigarette smoking and telomere length: A systematic review of 84 studies and metaanalysis. Environmental Research, 158, 480–489. https://doi.org/10.1016/j.envres.2017.06.038
[16] Alexeeff, S. E., Schaefer, C. A., Kvale, M. N., Shan, J., Blackburn, E. H., Risch, N., Ranatunga, D. K., Jorgenson, E., Hoffmann, T. J., Sakoda, L. C., Quesenberry, C. P., & Van Den Eeden, S. K. (2019). Telomere length and socioeconomic status at neighborhood and individual levels among 80,000 adults in the Genetic Epidemiology Research on Adult Health and Aging cohort. Environmental Epidemiology, 3(3), e049. https://doi.org/10.1097/EE9.0000000000000049
[17] Abdel Hady, A., El Shanawa, F., & Hassan, M. M. (2010). Evaluation of human telomerase activity as a novel tumor marker for hepatocellular carcinoma. Life Science Journal, 7(4), 153–161.
[18] Carulli, L., & Anzivino, C. (2014). Telomere and telomerase in chronic liver disease and hepatocarcinoma. World Journal of Gastroenterology, 20(20), 6287– 6292. https://doi.org/10.3748/wjg.v20.i20.6287
[19] Yang, B., Shebl, F. M., Sternberg, L. R., Warner, A. C., Kleiner, D. E., Edelman, D. C., Gomez, A., Dagnall, C. L., Hicks, B. D., Altekruse, S. F., Hernandez, B. Y., Lynch, C. F., Meltzer, P. S., & McGlynn, K. A. (2016). Telomere length and survival of patients with hepatocellular carcinoma in the United States. PLoS One, 11(11), e0166828. https://doi.org/10.1371/journal.pone.0166828
[20] Hoare, M., Das, T., & Alexander, G. (2010). Ageing, telomeres, senescence, and liver injury. Journal of Hepatology, 53, 950–961. https://doi.org/10.1016/j.jhep.2010.06.009
[21] Fleischhacker, M., & Schmidt, B. (2007). Circulating nucleic and cancer - A survey. Biochim Biophys Acta (BBA). Revisiones en Cáncer, 1775, 181–232.
[22] Urfali, M., Silan, F., Urfali, F. E., Gurgen, A., & Ozdemir, O. (2021). The comparison of telomere length in cancer patients: Plasma, whole blood and tumor tissue. Medicine Science, 10(4), 1117–1121. https://doi.org/10.5455/medscience.2021.03.072
[23] Rahamtalla, F. A., Abdalla, M. S. M., Mudawi, S. B. M., & Mohammed, A. H. (2018). Estimation of telomerase, AFP, and AFP-L3 levels in Sudanese patients with hepatocellular carcinoma and chronic liver diseases. Comparative Clinical Pathology, 27, 1133–1140. https://doi.org/10.1007/s00580-018-2709- 2
[24] Cawthon RM. (2002). Telomere measurement by quantitative PCR. Nucleic Acids Research, 30(10), e47. https://doi.org/10.1093/nar/30.10.e47
[25] Livak, K. J., & Thomas, D. S. (2001). Analysis of relative gene expression data using real- time quantitative PCR and the 22DDCT method. Methods, 25, 402–408.
[26] Tsatsakis, A., Oikonomopoulou, T., Nikolouzakis, T. K., Vakonaki, E., Tzatzarakis, M., Flamourakis, M., Renieri, E., Fragkiadaki, P., Iliaki, E., Bachlitzanaki, M., Karzi, V., Katsikantami, I., Kakridonis, F., Hatzidaki, E., Tolia, M., Svistunov, A. A., Spandidos, D. A., Nikitovic, D., Tsiaoussis, J., & Berdiaki, A. (2023). Role of telomere length in human carcinogenesis (Review). International Journal of Oncology, 63(1), 78. https://doi.org/10.3892/ijo.2023.5526
[27] Ma, L. J., Wang, X. Y., Duan, M., Liu, L. Z., Shi, J. Y., Dong, L. Q., Yang, L. X., Wang, Z. C., Ding, Z. B., Ke, A. W., Cao, Y., Zhang, X. M., Zhou, J., Fan, J., & Gao, Q. (2017). Telomere length variation in tumor cells and cancer-associated fibroblasts: Potential biomarker for hepatocellular carcinoma. The Journal of Pathology, 243(4), 407– 417. https://doi.org/10.1002/path.4961
[28] Hartmann, D., Srivastava, U., Thaler, M., Kleinhans, K. N., N’kontchou, G., Scheffold, A., Bauer, K., Kratzer, R. F., Kloos, N., Katz, S. F., Song, Z., Begus-Nahrmann, Y., Kleger, A., von Figura, G., Strnad, P., Lechel, A., Günes, C., Potthoff, A., Deterding, K.,... Rudolph, K. L. (2011). Telomerase gene mutations are associated with cirrhosis formation. Hepatology, 53, 1608–1617. https://doi.org/10.1002/hep.24217
[29] American Federation for Aging Research (AFAR). (2011). Info-aging guide to telomeres and telomerase. Biology of Aging, 1–7.
[30] Carulli, L., & Anzivino, C. (2014). Telomere and telomerase in chronic liver disease and hepatocarcinoma. World Journal of Gastroenterology, 20(20), 6287– 6292. https://doi.org/10.3748/wjg.v20.i20.6287
[31] Carulli, L. (2015). Telomere shortening as genetic risk factor of liver cirrhosis. World Journal of Gastroenterology, 21(2), 379–383. https://doi.org/10.3748/wjg.v21.i2.379
[32] Saini, N., Chawla, Y., Sharma, S., Duseja, A., Das, R., & Rajvanshi, A. (2006).Comparison of telomere length in chronic hepatitis and hepatocellular carcinomacases with cirrhosis and without cirrhosis. American Journal of Gastroenterology, 101, 163.
[33] Liu, J., Yang, Y., Zhang, H., Zhao, S., Liu, H., Ge, N., Yang, H., Xing, J. L, & Longer, C. Z. (2011). Leukocyte telomere length predicts increased risk of hepatitis B virus-related hepatocellular carcinoma: A case-control analysis. Cancer, 117(18):4247–4256. https://doi.org/10.1002/cncr.26015
[34] Needham, B. L., Salerno, S., Roberts, E., Boss, J., Allgood, K. L., & Mukherjee, B. (2019). Do black/white differences in telomere length depend on socioeconomic status? Biodemography and Social Biology, 65(4), 287–312. https://doi.org/10. 1080/19485565.2020.1765734
[35] Honig, L. S., Kang, M. S., Cheng, R., Eckfeldt, J. H., Thyagarajan, B., Leiendecker-Foster, C., Province, M. A., Sanders, J. L., Perls, T., Christensen, K., Lee, J. H., Mayeux, R., & Schupf, N. (2015). Heritability of telomere length in a study of long-lived families. Neurobiology of Aging, 36(10), 2785–2790. https: //doi.org/10.1016/j.neurobiolaging.2015.06.017
[36] Kim, J. H., Nam, C. M., Lee, D., Bang, H., Ko, J. H., Lim, I., Kim, G. J., Koes, B. W., & Lee, D. C. (2020). Heritability of telomere length across three generations of Korean families. Pediatric Research, 87(6), 1060–1065. https://doi.org/10.1038/ s41390-019-0699-7
[37] Gorenjak, V., Petrelis, A. M., Stathopoulou, M. G., & Visvikis-Siest, S. (2020). Telomere length determinants in childhood. [CCLM]. Clinical Chemistry and Laboratory Medicine, 58(2), 162–177. https://doi.org/10.1515/cclm-2019-0235
[38] Gramatges, M. M., Telli, M. L., Balise, R., & Ford, J. M. (2010). Longer relative telomere length in blood from women with sporadic and familial breast cancer compared with healthy controls. Cancer Epidemiology, Biomarkers & Prevention, 19(2), 605– 613. https://doi.org/10.1158/1055-9965.EPI-09-0896
[39] Ye, Q., Apsley, A. T., Etzel, L., Hastings, W. J., Kozlosky, J. T., Walker, C., Wolf, S. E., & Shalev, I. (2023). Telomere length and chronological age across the human lifespan: A systematic review and meta-analysis of 414 study samples including 743,019 individuals. Ageing Research Reviews, 90, 102031. https://doi.org/10.1016/j.arr.2023.102031
[40] Carulli, L. (2015). Telomere shortening as genetic risk factor of liver cirrhosis. World Journal of Gastroenterology, 21(2), 379–383. https://doi.org/10.3748/wjg.v21.i2.379
[41] Kitada, T., Seki, S., Kawakita, N., Kuroki, T., & Monna, T. (1995). Telomere shortening in chronic liver diseases. Biochemical and Biophysical Research Communications, 211, 33–39. https://doi.org/10.1006/bbrc.1995.1774
[42] Hsu, C. C., Lee, H. C., & Wei, Y. H. (2013). Mitochondrial DNA alterations and mitochondrial dysfunction in the progression of hepatocellular carcinoma. World Journal of Gastroenterology, 19(47), 8880–8886. https://doi.org/10.3748/wjg.v19. i47.8880
[43] Tin, A., Grams, M. E., Ashar, F. N., Lane, J. A., Rosenberg, A. Z., Grove, M. L., Boerwinkle, E., Selvin, E., Coresh, J., Pankratz, N., & Arking, D. E. (2016). Association between mitochondrial DNA copy number in peripheral blood and incident CKD in the atherosclerosis risk in communities study. Journal of the American Society of Nephrology, 27(8), 2467– 2473. https://doi.org/10.1681/ASN.2015060661
[44] Thyagarajan, B., Wang, R., Nelson, H., Barcelo, H., Koh, W. P., & Yuan, J. M. (2013). Mitochondrial DNA copy number is associated with breast cancer risk. PLoS One, 8(6), e65968. https://doi.org/10.1371/ journal.pone.0065968
[45] Reznik, E., Miller, M. L., Şenbabaoğlu, Y., Riaz, N., Sarungbam, J., Tickoo, S. K., Al-Ahmadie, H. A., Lee, W., Seshan, V. E., Hakimi, A. A., & Sander, C. (2016). Mitochondrial DNA copy number variation across human cancers. eLife, 5(e10769), 1– 20. https://doi.org/10.7554/eLife.10769
[46] Salem, R. H. (2016). The role of mitochondrial copy number variation in breast cancer among Sudanese patients [M.Sc. thesis]. University of Khartoum.
[47] Gardner, M., Bann, D., Wiley, L., Cooper, R., Hardy, R., Nitsch, D., Martin-Ruiz, C., Shiels, P., Sayer, A. A., Barbieri, M., Bekaert, S., Bischoff, C., Brooks- Wilson, A., Chen, W., Cooper, C., Christensen, K., De Meyer, T., Deary, I., Der, G.,... Ben-Shlomo, Y., & the Halcyon study team. (2014). Gender and telomere length: Systematic review and metaanalysis. Experimental Gerontology, 51, 15–27. https: //doi.org/10.1016/j.exger.2013.12.004
[48] Barrett, E. L., & Richardson, D. S. (2011). Sex differences in telomeres and lifespan. Aging Cell, 10(6), 913–921. https://doi.org/10.1111/j.1474- 9726.2011.00741.x
[49] Crocco, P., De Rango, F., Dato, S., Rose, G., & Passarino, G. (2021). Telomere length as a function of age at population level parallels human survival curves. Aging, 13(1), 204–218. https://doi.org/10.18632/aging.202498
[50] Rizvi, S., Raza, S. T., & Mahdi, F. (2014). Telomere length variations in aging and age-related diseases. Current Aging Science, 7(3), 161–167. https://doi.org/ 10.2174/1874609808666150122153151