Sudan Journal of Medical Sciences

ISSN: 1858-5051

High-impact research on the latest developments in medicine and healthcare across MENA and Africa

Thiopurine S-methyl Transferase (TPMT) Enzyme Level in Healthy Sudanese Population

Published date: Sep 30 2024

Journal Title: Sudan Journal of Medical Sciences

Issue title: Sudan JMS: Volume 19 (2024), Issue No. 3

Pages: 296 – 305

DOI: 10.18502/sjms.v19i3.14194

Authors:

Rayan Khalidrynkhalid@yahoo.comDepartment of Clinical Genetics and Immunology, Assafa college, Khartoum-Sudan

Nahla Hashim Hassan Erwanahlaerwa2002@yahoo.co.ukClinical Immunology Unit, Soba University Hospital and Immunology Unit, Department of Medical Microbiology and Parasitology, Faculty of Medicine, University of Khartoum.

Elshibli Mohamed Elshiblielshiblim@gmail.comDepartment of Biostatics, Al Neelain Stem Cell Research Center, Al Neelain University, Khartoum-Sudan

Imad Fadl-Elmulaimad.assafa@gmail.comDepartment of Clinical Genetics, Al Neelain Stem Cell Research Center, Al Neelain University, Khartoum-Sudan.

Abstract:

Background: Thiopurine drugs have limited use due to their toxicity, related to the enzyme thiopurine S-methyl transferase (TPMT) activity, which varies between individuals. This is the first study in Sudan, which aimed to assess the TPMT phenotypic status of healthy Sudanese volunteers.
Methods: A total of 177 healthy volunteers from Sudan were included in the study. TPMT enzymatic activities were measured using the ELISA serum protocol. We used SPSS to analyze the data and determined enzyme level categories and normal range with Z scores and quartile tests. The Sudan Medical Specialization Board (SMSB) Ethical Committee approved the study.
Results: There were 117 males and 60 females among the volunteers, with ages ranging from 16 to 70 years and a mean age ± SD of 28.0 ±1 0.2, median = 24. Most candidates were from the Afro-Asiatic linguistic group (64.5%), followed by Nilo-Saharan (18.6%) and Niger-Kordofanian (16.9%). The TPMT enzyme level ranged between 0.17 and 9.5 ng/ml, with a mean of 2.26 ± 0.75 ng/ml. The quartile classification included very low enzyme (<0.76 ng/ml) seen in 4 candidates (2.3%), intermediate low (0.76-1.4 ng/ml) seen in 34 (19.2%), the normal range (1.5 – 3.75 ng/ml) seen in 119 (67.2%), and high enzyme activity (>3.76 ng/ml) seen in 20 (11.3%). No significant correlations between age, sex, and ethnic groups were recorded.
Conclusion: The normal TPMT enzyme activity is between 1.5 and 3.76 ng/ml. A higher prevalence of TPMT deficiency was recorded and compared with international studies. Pretreatment screening using serum ELISA test for TPMT enzyme activity should be used to predict the risk of toxicity.

Keywords: thiopurine S-methyl transferase, TPMT enzyme level, thiopurine drugs, ELISA kits, an TPMT, human TPMT

References:

[1] Abaji, R., & Krajinovic, M. (2017). Thiopurine Smethyltransferase polymorphisms in acute lymphoblastic leukemia, inflammatory bowel disease and autoimmune disorders: Influence on treatment response. Pharmacogenomics Pers Med, 10, 143– 156.

[2] Ames, M. M., Selassie, C. D., Woodson, L. C., Loon, J. A. V., Hansch, C., & Weinshilboum, R. M. (2002). ACS publications. American Chemical Society.

[3] Ameyaw, M. M., Collie-Duguid, E. S., Powrie, R. H., Ofori-Adjei, D., & McLeod, H. L. (1999). Thiopurine methyltransferase alleles in British and Ghanaian populations. Human Molecular Genetics, 8(2), 367– 370. https://doi.org/10.1093/hmg/8.2.367

[4] Ansari, A. (2003). Treatment of zero and intermediate TPMT patients with a tailored dose of azathioprine - Research Portal. King’s College.

[5] Azad, M., Kaviani, S., Soleymani, M., Nourouzinia, M., & Hajfathali A. (2009). Common polymorphism’s analysis of thiopurine S-methyltransferase (TPMT) in Iranian population. Yakhteh Medical Journal, 11(3), 311–316.

[6] Coelho, T., Andreoletti, G., Ashton, J. J., Batra, A., Afzal, N. A., Gao, Y., Williams, A. P., Beattie, R. M., & Ennis, S. (2016). Genes implicated in thiopurineinduced toxicity: Comparing TPMT enzyme activity with clinical phenotype and exome data in a paediatric IBD cohort. Scientific Reports, 6(1), 34658. https://doi.org/10.1038/srep34658

[7] Collie-Duguid, E. S., Pritchard, S. C., Powrie, R. H., Sludden, J., Collier, D. A., Li, T., & McLeod, H. L. (1999). The frequency and distribution of thiopurine methyltransferase alleles in Caucasian and Asian populations. Pharmacogenetics, 9(1), 37–42. https://doi.org/10.1097/00008571- 199902000-00006

[8] Cooper, S. C., Ford, L. T., Berg, J. D., & Lewis, M. J. (2008). Ethnic variation of thiopurine Smethyltransferase activity: A large, prospective population study. Pharmacogenomics, 9(3), 303– 309. https://doi.org/10.2217/14622416.9.3.303

[9] Dobón Berenguer, B., Hassan, H. Y., Laayouni, H., Luisi, P., Rica no Ponce, I., Zhernakova, A., Wijmenga C., Tahir, H., Comas, D., Netea, M. G., & Bertranpetit, J. (2015). The genetics of East African populations: A Nilo-Saharan component in the African genetic landscape. Scientific Reports, 5, 9996. 2015.

[10] Hon, Y. Y., Fessing, M. Y., Pui, C. H., Relling, M. V., Krynetski, E. Y., & Evans, W. E. (1999). Polymorphism of the thiopurine S-methyltransferase gene in African-Americans. Human Molecular Genetics, 8(2), 371–376. https://doi.org/10.1093/hmg/8.2.371

[11] Lennard, L., Cartwright, C. S., Wade, R., & Vora, A. (2015). Thiopurine dose intensity and treatment outcome in childhood lymphoblastic leukaemia: The influence of thiopurine methyltransferase pharmacogenetics. British Journal of Haematology, 169(2), 228–240. https://doi.org/10.1111/bjh.13240

[12] Maitland, M. L., Vasisht, K., & Ratain, M. J. (2006). TPMT, UGT1A1 and DPYD: Genotyping to ensure safer cancer therapy? Trends in Pharmacological Sciences, 27(8), 432–437. https://doi.org/10.1016/j.tips.2006.06.007

[13] McLeod, H. L., Pritchard, S. C., Githang’a, J., Indalo, A., Ameyaw, M. M., Powrie, R. H., Booth, L., & Collie-Duguid, E. S. (1999). Ethnic differences in thiopurine methyltransferase pharmacogenetics: Evidence for allele specificity in Caucasian and Kenyan individuals. Pharmacogenetics, 9(6), 773–776. https://doi.org/10.1097/00008571- 199912000-00012

[14] Oliveira, E., Quental, S., Alves, S., Amorim, A., & Prata, M. J. (2007). Do the distribution patterns of polymorphisms at the thiopurine S-methyltransferase locus in sub-Saharan populations need revision? Hints from Cabinda and Mozambique. European Journal of Clinical Pharmacology, 63, 703–706. https://doi.org/10.1007/s00228-007-0310-8

[15] Otterness, D., Szumlanski, C., Lennard, L., Klemetsdal, B., Aarbakke, J., Park-Hah, J. O., Iven, H., Schmiegelow, K., Branum, E., O’Brien, J., & Weinshilboum, R. (1997). Human thiopurine methyltransferase pharmacogenetics: Gene sequence polymorphisms. Clinical Pharmacology and Therapeutics, 62(1), 60–73. https://doi.org/10.1016/S0009- 9236(97)90152-1

[16] Payne, K., Newman, W., Fargher, E., Tricker, K., Bruce, I. N., & Ollier, W. E. R. (2007). TPMT testing in rheumatology: Any better than routine monitoring? Rheumatology (Oxford, England), 46(5), 727–729. https://doi.org/10.1093/rheumatology/kel427

[17] Relling, M. V., Hancock, M. L., Rivera, G. K., Sandlund, J. T., Ribeiro, R. C., Krynetski, E. Y., Pui, C. H., & Evans, W. E. (1999). Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. Journal of the National Cancer Institute, 91(23), 2001–2008. https://doi.org/10.1093/jnci/91.23.2001

[18] Priest, V. L., Begg, E. J., Gardiner, S. J., Frampton, C. M. A., Gearry, R. B., Barclay, M. L., Clark, D. W. J., Hansen, P. (2006). Pharmacoeconomic analyses of azathioprine, methotrexate and prospective pharmacogenetic testing for the management of inflammatory bowel disease. Pharmacoeconomics, 24(8):767–781.

[19] Richard, V. S., Al-Ismail, D., & Salamat, A. (2007). Should we test TPMT enzyme levels before starting azathioprine? Hematology (Amsterdam, Netherlands), 12(4), 359–360. https://doi.org/10.1080/10245330701283959

[20] Schaeffeler, E., Fischer, C., Brockmeier, D., Wernet, D., Moerike, K., Eichelbaum, M., Zanger, U. M., & Schwab, M. (2004). Comprehensive analysis of thiopurine S-methyltransferase phenotypegenotype correlation in a large population of German-Caucasians and identification of novel TPMT variants. Pharmacogenetics, 14(7), 407–417. https://doi.org/10.1097/01.fpc.0000114745.08559.db

[21] Shin, J., Kayser, S. R., & Langaee, T. Y. (2009). Pharmacogenetics: From discovery to patient care. American Journal of Health-System Pharmacy, 66(7), 625–637. https://doi.org/10.2146/ajhp080170

[22] Szumlanski, C., Otterness, D., Her, C., Lee, D., Brandriff, B., Kelsell, D., Spurr, N., Lennard, L., Wieben, E., & Weinshilboum, R. (1996). Thiopurine methyltransferase pharmacogenetics: Human gene cloning and characterization of a common polymorphism. DNA and Cell Biology, 15(1), 17–30. https://doi.org/10.1089/dna.1996.15.17

[23] Weinshilboum, R. M., & Sladek, S. L. (1980). Mercaptopurine pharmacogenetics: Monogenic inheritance of erythrocyte thiopurine methyltransferase activity. American Journal of Human Genetics, 32(5), 651– 662.

[24] Woodson, L. C., Ames, M. M., Selassie, C. D., Hansch, C., & Weinshilboum, R. M. (1983, November). Thiopurine methyltransferase. Aromatic thiol substrates and inhibition by benzoic acid derivatives. Molecular Pharmacology, 24(3), 471–478.

[25] Zeglam, H. B., Benhamer, A., Aboud, A., Rtemi, H., Mattardi, M., Saleh, S. S., Bashein, A., & Enattah, N. (2015). Polymorphisms of the thiopurine Smethyltransferase gene among the Libyan population. The Libyan Journal of Medicine, 10(1), 27053. https://doi.org/10.3402/ljm.v10.27053

Download
HTML
Cite
Share
statistics

8 Abstract Views

68 PDF Downloads