Sudan Journal of Medical Sciences

ISSN: 1858-5051

High-impact research on the latest developments in medicine and healthcare across MENA and Africa

COVID-19: How Effective Are the Repurposed Drugs and Novel Agents in Treating the Infection?

Published date: Dec 31 2022

Journal Title: Sudan Journal of Medical Sciences

Issue title: Sudan JMS: Volume 17 (2022), Issue No. 4

Pages: 498–538

DOI: 10.18502/sjms.v17i4.12550

Authors:

Chow Suet-May - https://orcid.org/0000-0001-8918-2135

Kuok Sin-Yee

Lee Jia-Qing

Goh Pey-Wen

Harleen Kaur A/P Ranjit Singh

Timothy Tan Zhi-Zheng

Jhi-Biau Foo - https://orcid.org/0000-0002-5880-2220

Sharina Hamzah - https://orcid.org/0000-0001-6268-9059

Renukha Sellappans - https://orcid.org/0000-0002-9338-735X

Yow Hui-Yin - huiyin.yow@um.edu.my - https://orcid.org/0000-0002-9455-0817

Abstract:

Coronavirus disease 2019 (COVID-19) induced by the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) has impacted the lives and wellbeing of many people. This globally widespread disease poses a significant public health concern that urges to discover an effective treatment. This review paper discusses the effectiveness of repurposed drugs used to treat COVID-19 and potential novel therapies for COVID-19. Among the various repurposed drugs, remdesivir is the only agent approved by the Food and Drug Administration (FDA) to treat COVID-19. On the other hand, several drugs have been listed in the Emergency Use Authorization (EUA) by the FDA to treat COVID-19, including casirivimab and imdevimab, baricitinib (in combination with remdesivir), bamlanivimab, tocilizumab, and IL-6 inhibitors. In addition, in vitro and clinical studies have suggested cepharanthine, sotrovimab, and XAV-19 as potential treatments to manage COVID-19. Due to inadequate understanding of COVID-19 and the rapid mutation of SARS-CoV-2, COVID-19 remains a threat to global public health, with vaccination considered the most effective method to decrease COVID-19 transmission currently. Nevertheless, with the intense efforts of clinical researchers globally, more promising treatments for COVID-19 will be established in the future.

References:

[1] World Health Organization. (2020). WHO Director-General’s opening remarks at the media briefing on COVID-19-25 May 2020. Available from: https://www.who.int/director-general/speeches/detail/who-director-general-sopening- remarks-at-the-media-briefing-on-covid-19—25-may-2020 [Accessed 2021 December 22].

[2] Worldometer. COVID live - Coronavirus statistics - worldometer. Available from: http://worldometers.info/oronavirus [Accessed 2021 December 22].

[3] Guo, Y. R., Cao, Q. D., Hong, Z. S., Tan, Y.-Y., Chen, S.-D., Jin, H.-J., Tan, K.-S., Wang, D.-Y., & Yan, Y. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Military Medical Research, 7(1), 11. https://doi.org/10.1186/s40779-020-00240-0

[4] Centers for Disease Control and Prevention. (2022). Symptoms of COVID- 19. Available from: https://www.cdc.gov/coronavirus/2019-ncov/symptomstesting/ symptoms.html [Accessed 2021 December 22].

[5] World Health Organization. (2022). Tracking SARS-CoV-2 variants. Available from: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants [Accessed 2021 December 22].

[6] Zhu, Z., Lian, X., Su, X., Wu, W., Marraro, G. A., & Zeng, Y. (2020). From SARS and MERS to COVID-19: A brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respiratory Research, 21, 224. https://doi.org/10.1186/s12931-020-01479-w

[7] Centers for Disease Control and Prevention. (2022). What you need to know about variants. Available from: https://www.cdc.gov/coronavirus/2019-ncov/variants/deltavariant. html [Accessed 2021 August 12].

[8] Centers for Disease Control and Prevention. (2022). Omicron variant: What you need to know. Available from: https://www.cdc.gov/coronavirus/2019- ncov/variants/omicron-variant.html [Accessed 2021 December 22].

[9] Gupta, A., Gonzalez-Rojas, Y., Juarez, E., Crespo Casal, M., Moya, J., Falci, D. R., Sarkis, E., Solis, J., Zheng, H., Scott, N., Cathcart, A. L., Hebner, C. M., Sager, J., Mogalian, E., Tipple, C., Peppercorn, A., Alexander, E., Pang, P. S., Free, A., . . . Shapiro, A. E., & the COMET-ICE Investigators. (2022). Early treatment for Covid-19 with SARS-CoV-2 neutralizing antibody sotrovimab. The New England Journal of Medicine, 385(21), 1941–1950. https://doi.org/10.1056/NEJMoa2107934

[10] Liu, Q., Luo, D., Haase, J. E., Guo, Q., Wang, X. Q., Liu, S., Xia, L., Liu, Z., Yang, J., & Yang, B. X. (2020). The experiences of health-care providers during the COVID- 19 crisis in China: A qualitative study. The Lancet. Global Health, 8(6), e790–e798. https://doi.org/10.1016/S2214-109X(20)30204-7

[11] Malaysia breaches 20,000 new Covid-19 cases and death toll of 10,000. The Straits Times [Internet]. 2021 Aug 5 [cited 2021 Aug 12]. Available from: https://www.straitstimes.com/asia/se-asia/new-daily-high-of-20596-covid- 19-cases-bring-malaysias-total-to-1203706

[12] Venkatesan, P. (2022). Repurposing drugs for treatment of COVID-19. The Lancet. Respiratory Medicine, 9(7), e63. https://doi.org/10.1016/S2213-2600(21)00270-8

[13] Boopathi, S., Poma, A. B., & Kolandaivel, P. (2022). Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. Journal of Biomolecular Structure & Dynamics, 39(9), 3409–3418.

[14] Dhama, K., Khan, S., Tiwari, R., Sircar, S., Bhat, S., Malik, Y. S., Singh, K. P., Chaicumpa, W., Bonilla-Aldana, D. K., & Rodriguez-Morales, A. J. (2020). Coronavirus Disease 2019-COVID-19. Clinical Microbiology Reviews, 33(4), e00028– e20. https://doi.org/10.1128/CMR.00028-20

[15] Tang, Y., Liu, J., Zhang, D., Xu, Z., Ji, J., & Wen, C. (2020). Cytokine storm in COVID- 19: The current evidence and treatment strategies. Frontiers in Immunology, 11, 1708. https://doi.org/10.3389/fimmu.2020.01708

[16] Abdullahi, I. N., Emeribe, A. U., Ajayi, O. A., Oderinde, B. S., Amadu, D. O., & Osuji, A. I. (2020). Implications of SARS-CoV-2 genetic diversity and mutations on pathogenicity of the COVID-19 and biomedical interventions. Journal of Taibah University Medical Sciences, 15(4), 258–264. https://doi.org/10.1016/j.jtumed.2020.06.005

[17] Cascella, M., Rajnik, M., Aleem, A., Dulebohn, S. C., & Di Napoli, R. (2022). Features, evaluation, and treatment of coronavirus (COVID-19). StatPearls.

[18] Centers for Disease Control and Prevention. (2022). Science brief: Emerging SARS-CoV-2 variants. Available from: https://www.cdc.gov/coronavirus/2019- ncov/science/science-briefs/scientific-brief-emerging-variants.html [Accessed 2021 August 12].

[19] Centers for Disease Control and Prevention. (2022). SARS-CoV-2 variant classifications and definitions. Available from: https://www.cdc.gov/coronavirus/2019- ncov/variants/variant-info.html [Accessed 2021 August 12].

[20] Kokic, G., Hillen, H. S., Tegunov, D., Dienemann, C., Seitz, F., Schmitzova, J., Farnung, L., Siewert, A., Höbartner, C., & Cramer, P. (2022). Mechanism of SARSCoV- 2 polymerase stalling by remdesivir. Nature Communications, 12(1), 279. https://doi.org/10.1038/s41467-020-20542-0

[21] Pruijssers, A. J., George, A. S., Schäfer, A., Leist, S. R., Gralinksi, L. E., Dinnon, K. H., III, Yount, B. L., Agostini, M. L., Stevens, L. J., Chappell, J. D., Lu, X., Hughes, T. M., Gully, K., Martinez, D. R., Brown, A. J., Graham, R. L., Perry, J. K., Du Pont, V., Pitts, J., . . . Sheahan, T. P. (2020). Remdesivir inhibits SARS-CoV-2 in human lung cells and chimeric SARS-CoV expressing the SARS-CoV-2 RNA polymerase in mice. Cell Reports, 32(3), 107940. https://doi.org/10.1016/j.celrep.2020.107940

[22] Beigel, J. H., Tomashek, K. M., Dodd, L. E., Mehta, A. K., Zingman, B. S., Kalil, A. C., Hohmann, E., Chu, H. Y., Luetkemeyer, A., Kline, S., Lopez de Castilla, D., Finberg, R. W., Dierberg, K., Tapson, V., Hsieh, L., Patterson, T. F., Paredes, R., Sweeney, D. A., Short, W. R., . . . Lane, H. C., & the ACTT-1 Study Group Members. (2020). Remdesivir for the treatment of Covid-19. The New England Journal of Medicine, 383(19), 1813–1826. https://doi.org/10.1056/NEJMoa2007764

[23] U.S. Food and Drug Administration. (2020). Coronavirus (COVID-19) update: FDA authorizes drug combination for treatment of COVID-19. Available from: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19- update-fda-authorizes-drug-combination-treatment-covid-19 [Accessed 2021 August 12].

[24] Pan, H., Peto, R., Henao-Restrepo, A. M., Preziosi, M. P., Sathiyamoorthy, V., Abdool Karim, Q., Alejandria, M. M., Hernández García, C., Kieny, M. P., Malekzadeh, R., Murthy, S., Reddy, K. S., Roses Periago, M., Abi Hanna, P., Ader, F., Al-Bader, A. M., Alhasawi, A., Allum, E., Alotaibi, A., . . . Swaminathan, S., & the WHO Solidarity Trial Consortium. (2022). Repurposed antiviral drugs for Covid-19—Interim WHO Solidarity trial results. The New England Journal of Medicine, 384(6), 497–511. https://doi.org/10.1056/NEJMoa2023184

[25] WHO Solidarity Trial Consortium. (2022). Remdesivir and three other drugs for hospitalised patients with COVID-19: Final results of the WHO Solidarity randomised trial and updated meta-analyses. Lancet, 399(10339), 1941–1953. https://doi.org/10.1016/S0140-6736(22)00519-0

[26] Cantini, F., Niccoli, L., Matarrese, D., Nicastri, E., Stobbione, P., & Goletti, D. (2020). Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. The Journal of Infection, 81(2), 318–356. https://doi.org/10.1016/j.jinf.2020.04.017

[27] Richardson, P., Griffin, I., Tucker, C., Smith, D., Oechsle, O., Phelan, A., Rawling, M., Savory, E., & Stebbing, J. (2020). Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet, 395(10223), e30–e31. https://doi.org/10.1016/S0140-6736(20)30304-4

[28] Kalil, A. C., Patterson, T. F., Mehta, A. K., Tomashek, K. M., Wolfe, C. R., Ghazaryan, V., Marconi, V. C., Ruiz-Palacios, G. M., Hsieh, L., Kline, S., Tapson, V., Iovine, N. M., Jain, M. K., Sweeney, D. A., El Sahly, H. M., Branche, A. R., Regalado Pineda, J., Lye, D. C., Sandkovsky, U., . . . Beigel, J. H., & the ACTT-2 Study Group Members. (2022). Baricitinib plus remdesivir for hospitalized adults with Covid-19. The New England Journal of Medicine, 384(9), 795–807. https://doi.org/10.1056/NEJMoa2031994

[29] Han, Q., Guo, M., Zheng, Y., Zhang, Y., De, Y., Xu, C., Zhang, L., Sun, R., Lv, Y., Liang, Y., Xu, F., Pang, J., & Chen, Y. (2020). Current evidence of interleukin-6 signaling inhibitors in patients with COVID-19: A systematic review and meta-analysis. Frontiers in Pharmacology, 11, 615972. https://doi.org/10.3389/fphar.2020.615972

[30] Pinzon, R. T., Wijaya, V. O., & Buana, R. B. (2022). Interleukin-6 (IL-6) inhibitors as therapeutic agents for coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. Journal of Infection and Public Health, 14(8), 1001–1009. https://doi.org/10.1016/j.jiph.2021.06.004

[31] Salama, C., Han, J., Yau, L., Reiss, W. G., Kramer, B., Neidhart, J. D., Criner, G. J., Kaplan-Lewis, E., Baden, R., Pandit, L., Cameron, M. L., Garcia-Diaz, J., Chávez, V., Mekebeb-Reuter, M., Lima de Menezes, F., Shah, R., González-Lara, M. F., Assman, B., Freedman, J., & Mohan, S. V. (2022). Tocilizumab in patients hospitalized with Covid-19 pneumonia. The New England Journal of Medicine, 384(1), 20–30. https://doi.org/10.1056/NEJMoa2030340

[32] Perrone, F., Piccirillo, M. C., Ascierto, P. A., Salvarani, C., Parrella, R., Marata, A. M., Popoli, P., Ferraris, L., Marrocco-Trischitta, M. M., Ripamonti, D., Binda, F., Bonfanti, P., Squillace, N., Castelli, F., Muiesan, M. L., Lichtner, M., Calzetti, C., Salerno, N. D., Atripaldi, L., . . . Gallo, C., & the TOCIVID-19 investigators, Italy. (2020). Tocilizumab for patients with COVID-19 pneumonia. The single-arm TOCIVID-19 prospective trial. Journal of Translational Medicine, 18(1), 405. https://doi.org/10.1186/s12967-020- 02573-9

[33] Strohbehn, G. W., Heiss, B. L., Rouhani, S. J., Trujillo, J. A., Yu, J., Kacew, A. J., Higgs, E. F., Bloodworth, J. C., Cabanov, A., Wright, R. C., Koziol, A. K., Weiss, A., Danahey, K., Karrison, T. G., Edens, C. C., Bauer Ventura, I., Pettit, N. N., Patel, B. K., Pisano, J., . . . Reid, P. D. (2022). COVIDOSE: A phase II clinical trial of low-dose tocilizumab in the treatment of noncritical COVID-19 pneumonia. Clinical Pharmacology and Therapeutics, 109(3), 688–696. https://doi.org/10.1002/cpt.2117

[34] Hermine, O., Mariette, X., Tharaux, P. L., Resche-Rigon, M., Porcher, R., Ravaud, P., Bureau, S., Dougados, M., Tibi, A., Azoulay, E., Cadranel, J., Emmerich, J., Fartoukh, M., Guidet, B., Humbert, M., Lacombe, K., Mahevas, M., Pene, F., Pourchet-Martinez, V., . . . Renet, S., & the CORIMUNO-19 Collaborative Group. (2022). Effect of tocilizumab vs usual care in adults hospitalized with COVID-19 and moderate or severe pneumonia: A randomized clinical trial. JAMA Internal Medicine, 181(1), 32– 40. https://doi.org/10.1001/jamainternmed.2020.6820

[35] Salvarani, C., Dolci, G., Massari, M., Merlo, D. F., Cavuto, S., Savoldi, L., Bruzzi, P., Boni, F., Braglia, L., Turrà, C., Ballerini, P. F., Sciascia, R., Zammarchi, L., Para, O., Scotton, P. G., Inojosa, W. O., Ravagnani, V., Salerno, N. D., Sainaghi, P. P., . . . Costantini, M., & the RCT-TCZ-COVID-19 Study Group. (2022). Effect of tocilizumab vs standard care on clinical worsening in patients hospitalized with COVID-19 pneumonia: A randomized clinical trial. JAMA Internal Medicine, 181(1), 24–31. https://doi.org/10.1001/jamainternmed.2020.6615

[36] Rosas, I. O., Bräu, N., Waters, M., Go, R. C., Hunter, B. D., Bhagani, S., Skiest, D., Aziz, M. S., Cooper, N., Douglas, I. S., Savic, S., Youngstein, T., Del Sorbo, L., Cubillo Gracian, A., De La Zerda, D. J., Ustianowski, A., Bao, M., Dimonaco, S., Graham, E., . . . Malhotra, A. (2022). Tocilizumab in hospitalized patients with severe Covid-19 pneumonia. The New England Journal of Medicine, 384(16), 1503–1516. https://doi.org/10.1056/NEJMoa2028700

[37] Veiga, V. C., Prats, J. A. G. G., Farias, D. L. C., Rosa, R. G., Dourado, L. K., Zampieri, F. G., Machado, F. R., Lopes, R. D., Berwanger, O., Azevedo, L. C. P., Avezum, Á., Lisboa, T. C., Rojas, S. S. O., Coelho, J. C., Leite, R. T., Carvalho, J. C., Andrade, L. E. C., Sandes, A. F., Pintão, M. C. T., . . . Scheinberg, P., & the Coalition covid-19 Brazil VI Investigators. (2022). Effect of tocilizumab on clinical outcomes at 15 days in patients with severe or critical coronavirus disease 2019: Randomised controlled trial. BMJ (Clinical Research Ed.), 372(84), n84. https://doi.org/10.1136/bmj.n84

[38] Lescure, F. X., Honda, H., Fowler, R. A., Lazar, J. S., Shi, G., Wung, P., Patel, N., Hagino, O., Bazzalo, I. J., Casas, M. M., Nuñez, S. A., Pere, Y., Ibarrola, C. M., Solis Aramayo, M. A., Cuesta, M. C., Duarte, A. E., Gutierrez Fernandez, P. M., Iannantuono, M. A., Miyazaki, E. A., . . . Vizcarra, P., & the Sarilumab COVID-19 Global Study Group. (2022). Sarilumab in patients admitted to hospital with severe or critical COVID-19: A randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet. Respiratory Medicine, 9(5), 522–532. https://doi.org/10.1016/S2213-2600(21)00099-0

[39] Gordon, A. C., Mouncey, P. R., Al-Beidh, F., Rowan, K. M., Nichol, A. D., Arabi, Y. M., Annane, D., Beane, A., van Bentum-Puijk, W., Berry, L. R., Bhimani, Z., Bonten, M. J. M., Bradbury, C. A., Brunkhorst, F. M., Buzgau, A., Cheng, A. C., Detry, M. A., Duffy, E. J., Estcourt, L. J., . . . Derde, L. P. G., & the REMAP-CAP Investigators. (2022). Interleukin-6 receptor antagonists in critically ill patients with Covid-19. The New England Journal of Medicine, 384(16), 1491–1502. https://doi.org/10.1056/NEJMoa2100433

[40] Abani, O., Abbas, A., Abbas, F., . . ., & the RECOVERY Collaborative Group. (2022). Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet, 397(10285), 1637–1645. https://doi.org/10.1016/S0140-6736(21)00676-0

[41] Mortaz, E., Tabarsi, P., Varahram, M., Folkerts, G., & Adcock, I. M. (2020). The immune response and immunopathology of COVID-19. Frontiers in Immunology, 11, 2037. https://doi.org/10.3389/fimmu.2020.02037

[42] U.S. Food and Drug Administration. (2022). Coronavirus (COVID-19) update: FDA authorizes drug for treatment of COVID-19. Available from: https://www.fda.gov/newsevents/ press-announcements/coronavirus-covid-19-update-fda-authorizes-drugtreatment- covid-19 [Accessed 2021 August 12].

[43] Dorward, J., & Gbinigie, K. (2020). Lopinavir/ritonavir: A rapid review of effectiveness in COVID-19. Available from: https://covid19- evidence.paho.org/handle/20.500.12663/1087 [Accessed 2021 August 12].

[44] Horby, P. W., Mafham, M., Bell, J. L., Linsell, L., Staplin, N., Emberson, J., Palfreeman, A., Raw, J., Elmahi, E., Prudon, B., Green, C., Carley, S., Chadwick, D., Davies, M., Wise, M. P., Baillie, J. K., Chappell, L. C., Faust, S. N., Jaki, T., . . . Landray, M. J., & the RECOVERY Collaborative Group. (2020). Lopinavir-ritonavir in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet, 396(10259), 1345–1352. https://doi.org/10.1016/S0140-6736(20)32013-4

[45] Cao, B., Wang, Y., Wen, D., Liu, W., Wang, J., Fan, G., Ruan, L., Song, B., Cai, Y., Wei, M., Li, X., Xia, J., Chen, N., Xiang, J., Yu, T., Bai, T., Xie, X., Zhang, L., Li, C., . . . Wang, C. (2020). A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. The New England Journal of Medicine, 382(19), 1787–1799. https://doi.org/10.1056/NEJMoa2001282

[46] Sahebnasagh, A., Avan, R., Saghafi, F., Mojtahedzadeh, M., Sadremomtaz, A., Arasteh, O., Tanzifi, A., Faramarzi, F., Negarandeh, R., Safdari, M., Khataminia, M., Rezai Ghaleno, H., Habtemariam, S., & Khoshi, A. (2020). Pharmacological treatments of COVID-19. Pharmacological Reports, 72(6), 1446–1478. https://doi.org/10.1007/s43440-020-00152-9

[47] Chen, H., Zhang, Z., Wang, L., Huang, Z., Gong, F., Li, X., Chen, Y., & Wu, J. J. (2020). First clinical study using HCV protease inhibitor danoprevir to treat COVID-19 patients. Medicine, 99(48), e23357. https://doi.org/10.1097/MD.0000000000023357

[48] Zhang, Z., Wang, S., Tu, X., Peng, X., Huang, Y., Wang, L., Ju, W., Rao, J., Li, X., Zhu, D., Sun, H., & Chen, H. (2020). A comparative study on the time to achieve negative nucleic acid testing and hospital stays between danoprevir and lopinavir/ritonavir in the treatment of patients with COVID-19. Journal of Medical Virology, 92(11), 2631– 2636. https://doi.org/10.1002/jmv.26141

[49] Tripathy, S., Dassarma, B., Roy, S., Chabalala, H., & Matsabisa, M. G. (2020). A review on possible modes of action of chloroquine/hydroxychloroquine: Repurposing against SAR-CoV-2 (COVID-19) pandemic. International Journal of Antimicrobial Agents, 56(2), 106028. https://doi.org/10.1016/j.ijantimicag.2020.106028

[50] Satarker, S., Ahuja, T., Banerjee, M., e, V. B., Dogra, S., Agarwal, T., & Nampoothiri, M. (2020). Hydroxychloroquine in COVID-19: Potential mechanism of action against SARS-CoV-2. Current Pharmacology Reports, 6(5), 203–211. https://doi.org/10.1007/s40495-020-00231-8

[51] Sun, J., Chen, Y., Fan, X., Wang, X., Han, Q., & Liu, Z. (2020). Advances in the use of chloroquine and hydroxychloroquine for the treatment of COVID-19. Postgraduate Medicine, 132(7), 604–613. https://doi.org/10.1080/00325481.2020.1778982

[52] U.S. Food and Drug Administration. (2020). Coronavirus (COVID-19) update: FDA revokes emergency use authorization for chloroquine and hydroxychloroquine. Available from: https://www.fda.gov/news-events/press-announcements/coronaviruscovid- 19-update-fda-revokes-emergency-use-authorization-chloroquine-and [Accessed 2021 August 12].

[53] Horby, P., Mafham, M., Linsell, L., Bell, J. L., Staplin, N., Emberson, J. R., Wiselka, M., Ustianowski, A., Elmahi, E., Prudon, B., Whitehouse, T., Felton, T., Williams, J., Faccenda, J., Underwood, J., Baillie, J. K., Chappell, L. C., Faust, S. N., Jaki, T., . . . Landray, M. J., & the RECOVERY Collaborative Group. (2020). Effect of hydroxychloroquine in hospitalized patients with Covid-19. The New England Journal of Medicine, 383(21), 2030–2040. https://doi.org/10.1056/NEJMoa2022926

[54] Yang, J. W., Yang, L., Luo, R. G., & Xu, J.-F. (2020). Corticosteroid administration for viral pneumonia: COVID-19 and beyond. Clinical Microbiology and Infection, 26(9), 1171–1177. https://doi.org/10.1016/j.cmi.2020.06.020

[55] Kaye, A. G., & Siegel, R. (2020). The efficacy of IL-6 inhibitor Tocilizumab in reducing severe COVID-19 mortality: A systematic review. PeerJ, 8, e10322. https://doi.org/10.7717/peerj.10322

[56] Ahmed, M. H., & Hassan, A. (2020). Dexamethasone for the treatment of coronavirus disease (COVID-19): A review. SN Comprehensive Clinical Medicine, 2(12), 2637– 2646. https://doi.org/10.1007/s42399-020-00610-8

[57] Annane, D. (2022). Corticosteroids for COVID-19. Journal of Intensive Medicine, 1(1), 14–25. https://doi.org/10.1016/j.jointm.2021.01.002

[58] Sterne, J. A. C., Murthy, S., Diaz, J. V., Slutsky, A. S., Villar, J., Angus, D. C., Annane, D., Azevedo, L. C. P., Berwanger, O., Cavalcanti, A. B., Dequin, P. F., Du, B., Emberson, J., Fisher, D., Giraudeau, B., Gordon, A. C., Granholm, A., Green, C., Haynes, R., . . . Marshall, J. C., & the WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group. (2020). Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: A meta-analysis. Journal of the American Medical Association, 324(13), 1330–1341. https://doi.org/10.1001/jama.2020.17023

[59] Horby, P., Lim, W. S., Emberson, J. R., Mafham, M., Bell, J. L., Linsell, L., Staplin, N., Brightling, C., Ustianowski, A., Elmahi, E., Prudon, B., Green, C., Felton, T., Chadwick, D., Rege, K., Fegan, C., Chappell, L. C., Faust, S. N., Jaki, T., . . . Landray, M. J., & the RECOVERY Collaborative Group. (2022). Dexamethasone in hospitalized patients with Covid-19—Preliminary report. The New England Journal of Medicine, 384(8), 693–704. https://doi.org/10.1056/NEJMoa2021436

[60] World Health Organization. (2022). Therapeutics and COVID-19: Living guideline. Available from: https://www.who.int/publications/i/item/WHO-2019- nCoV-therapeutics-2021.2 [Accessed 2021 August 12].

[61] Tomazini, B. M., Maia, I. S., Cavalcanti, A. B., Berwanger, O., Rosa, R. G., Veiga, V. C., Avezum, A., Lopes, R. D., Bueno, F. R., Silva, M. V. A. O., Baldassare, F. P., Costa, E. L. V., Moura, R. A. B., Honorato, M. O., Costa, A. N., Damiani, L. P., Lisboa, T., Kawano- Dourado, L., Zampieri, F. G., . . . Azevedo, L. C. P., & the COALITION COVID-19 Brazil III Investigators. (2020). Effect of dexamethasone on days alive and ventilator-free in patients with moderate or severe acute respiratory distress syndrome and COVID-19: The CoDEX randomized clinical trial. Journal of the American Medical Association, 324(13), 1307–1316. https://doi.org/10.1001/jama.2020.17021

[62] Angus, D. C., Derde, L., Al-Beidh, F., Annane, D., Arabi, Y., Beane, A., van Bentum- Puijk, W., Berry, L., Bhimani, Z., Bonten, M., Bradbury, C., Brunkhorst, F., Buxton, M., Buzgau, A., Cheng, A. C., de Jong, M., Detry, M., Estcourt, L., Fitzgerald, M., . . . Summers, C., & the Writing Committee for the REMAP-CAP Investigators. (2020). Effect of hydrocortisone on mortality and organ support in patients with severe COVID-19: The REMAP-CAP COVID-19 corticosteroid domain randomized clinical trial. Journal of the American Medical Association, 324(13), 1317–1329. https://doi.org/10.1001/jama.2020.17022

[63] Dequin, P. F., Heming, N., Meziani, F., Plantefève, G., Voiriot, G., Badié, J., François, B., Aubron, C., Ricard, J. D., Ehrmann, S., Jouan, Y., Guillon, A., Leclerc, M., Coffre, C., Bourgoin, H., Lengellé, C., Caille-Fénérol, C., Tavernier, E., Zohar, S., . . . Le Gouge, A., & the CAPE COVID Trial Group and the CRICS-TriGGERSep Network. (2020). Effect of hydrocortisone on 21-day mortality or respiratory support among critically ill patients with COVID-19: A randomized clinical trial. Journal of the American Medical Association, 324(13), 1298–1306. https://doi.org/10.1001/jama.2020.16761

[64] Corral-Gudino, L., Bahamonde, A., Arnaiz-Revillas, F., Gómez-Barquero, J., Abadía- Otero, J., García-Ibarbia, C., Mora, V., Cerezo-Hernández, A., Hernández, J. L., López-Muñíz, G., Hernández-Blanco, F., Cifrián, J. M., Olmos, J. M., Carrascosa, M., Nieto, L., Fariñas, M. C., Riancho, J. A., & the GLUCOCOVID investigators. (2022). Methylprednisolone in adults hospitalized with COVID-19 pneumonia : An open-label randomized trial (GLUCOCOVID). Wiener Klinische Wochenschrift, 133(7-8), 303–311. https://doi.org/10.1007/s00508-020-01805-8

[65] Cui, Z., Merritt, Z., Assa, A., Mustehsan, H., Chung, E., Liu, S., Kumthekar, A., Ayesha, B., McCort, M., Palaiodimos, L., Baron, S., Averbukh, Y., Southern, W., & Arora, S. (2022). Early and significant reduction in c-reactive protein levels after corticosteroid therapy is associated with reduced mortality in patients with COVID-19. Journal of Hospital Medicine, 16(3), 142–148. https://doi.org/10.12788/jhm.3560

[66] Gupta, D., Sahoo, A. K., & Singh, A. (2020). Ivermectin: Potential candidate for the treatment of Covid 19. The Brazilian Journal of Infectious Diseases, 24, 369–371. https://doi.org/10.1016/j.bjid.2020.06.002

[67] Abd-Elsalam, S., Noor, R. A., Badawi, R., Khalaf, M., Esmail, E. S., Soliman, S., Abd El Ghafar, M. S., Elbahnasawy, M., Moustafa, E. F., Hassany, S. M., Medhat, M. A., Ramadan, H. K., Eldeen, M. A. S., Alboraie, M., Cordie, A., & Esmat, G. (2022). Clinical study evaluating the efficacy of ivermectin in COVID-19 treatment: A randomized controlled study. Journal of Medical Virology, 93(10), 5833–5838. https://doi.org/10.1002/jmv.27122

[68] Pott-Junior, H., Paoliello, M. M. B., Miguel, A. Q. C., da Cunha, A. F., de Melo Freire, C. C., Neves, F. F., da Silva de Avó, L. R., Roscani, M. G., Dos Santos, S. S., & Chachá, S. G. F. (2022). Use of ivermectin in the treatment of Covid-19: A pilot trial. Toxicology Reports, 8, 505–510. https://doi.org/10.1016/j.toxrep.2021.03.003

[69] Temple, C., Hoang, R., & Hendrickson, R. G. (2022). Toxic effects from ivermectin use associated with prevention and treatment of COVID-19. The New England Journal of Medicine, 385(23), 2197–2198. https://doi.org/10.1056/NEJMc2114907

[70] U.S. Food and Drug Administration. (2020). Coronavirus (COVID-19) update: FDA authorizes monoclonal antibody for treatment of COVID-19. Available from: https://www.fda.gov/news-events/press-announcements/coronavirus-covid- 19-update-fda-authorizes-monoclonal-antibody-treatment-covid-19 [Accessed 2021 August 12].

[71] Cohen, M. S., Nirula, A., Mulligan, M. J., Novak, R. M., Marovich, M., Yen, C., Stemer, A., Mayer, S. M., Wohl, D., Brengle, B., Montague, B. T., Frank, I., McCulloh, R. J., Fichtenbaum, C. J., Lipson, B., Gabra, N., Ramirez, J. A., Thai, C., Chege, W., . . . Skovronsky, D. M., & the BLAZE-2 Investigators. (2022). Effect of bamlanivimab vs placebo on incidence of COVID-19 among residents and staff of skilled nursing and assisted living facilities: A randomized clinical trial. Journal of the American Medical Association, 326(1), 46–55. https://doi.org/10.1001/jama.2021.8828

[72] Gottlieb, R. L., Nirula, A., Chen, P., Boscia, J., Heller, B., Morris, J., Huhn, G., Cardona, J., Mocherla, B., Stosor, V., Shawa, I., Kumar, P., Adams, A. C., Van Naarden, J., Custer, K. L., Durante, M., Oakley, G., Schade, A. E., Holzer, T. R., . . . Skovronsky, D. M. (2022). Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19: A randomized clinical trial. Journal of the American Medical Association, 325(7), 632– 644. https://doi.org/10.1001/jama.2021.0202

[73] Dougan, M., Nirula, A., Azizad, M., Mocherla, B., Gottlieb, R. L., Chen, P., Hebert, C., Perry, R., Boscia, J., Heller, B., Morris, J., Crystal, C., Igbinadolor, A., Huhn, G., Cardona, J., Shawa, I., Kumar, P., Adams, A. C., Van Naarden, J., . . . Skovronsky, D. M., & the BLAZE-1 Investigators. (2022). Bamlanivimab plus etesevimab in mild or moderate Covid-19. The New England Journal of Medicine, 385(15), 1382–1392. https://doi.org/10.1056/NEJMoa2102685

[74] National Institutes of Health. (2022). Anti-SARS-CoV-2 monoclonal antibodies. Available from: https://www.covid19treatmentguidelines.nih.gov/therapies/anti-sars-cov-2- antibody-products/anti-sars-cov-2-monoclonal-antibodies/ [Accessed 2021 August 12].

[75] Weinreich, D. M., Sivapalasingam, S., Norton, T., Ali, S., Gao, H., Bhore, R., Musser, B. J., Soo, Y., Rofail, D., Im, J., Perry, C., Pan, C., Hosain, R., Mahmood, A., Davis, J. D., Turner, K. C., Hooper, A. T., Hamilton, J. D., Baum, A., . . . Yancopoulos, G. D., & the Trial Investigators. (2022). REGN-COV2, a neutralizing antibody cocktail, in outpatients with Covid-19. The New England Journal of Medicine, 384(3), 238–251. https://doi.org/10.1056/NEJMoa2035002

[76] O’Brien, M. P., Forleo-Neto, E., Musser, B. J., Isa, F., Chan, K. C., Sarkar, N., Bar, K. J., Barnabas, R. V., Barouch, D. H., Cohen, M. S., Hurt, C. B., Burwen, D. R., Marovich, M. A., Hou, P., Heirman, I., Davis, J. D., Turner, K. C., Ramesh, D., Mahmood, A., . . . Weinreich, D. M., & the Covid-19 Phase 3 Prevention Trial Team. (2022). Subcutaneous REGEN-COV antibody combination to prevent Covid-19. The New England Journal of Medicine, 385(13), 1184–1195. https://doi.org/10.1056/NEJMoa2109682

[77] U.S. Food and Drug Administration. (2022). FDA authorizes REGEN-COV mAb for prevention for COVID-19. Available from: https://www.fda.gov/drugs/drug-safety-andavailability/ fda-authorizes-regen-cov-monoclonal-antibody-therapy-post-exposureprophylaxis- prevention-covid-19 [Accessed 2021 August 12].

[78] Horby, P. W., Mafham, M., Peto, L., . . ., & the RECOVERY Collaborative Group. (2022). Casirivimab and imdevimab in patients admitted to hospital with COVID- 19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet, 399(10325), 665–676. https://doi.org/10.1016/S0140-6736(22)00163-5

[79] Rogosnitzky, M., Okediji, P., & Koman, I. (2020). Cepharanthine: A review of the antiviral potential of a Japanese-approved alopecia drug in COVID-19. Pharmacological Reports, 72(6), 1509–1516. https://doi.org/10.1007/s43440-020- 00132-z

[80] Ohashi, H., Watashi, K., Saso, W., Shionoya, K., Iwanami, S., Hirokawa, T., Shirai, T., Kanaya, S., Ito, Y., Kim, K. S., Nomura, T., Suzuki, T., Nishioka, K., Ando, S., Ejima, K., Koizumi, Y., Tanaka, T., Aoki, S., Kuramochi, K., . . . Wakita, T. (2022). Potential anti-COVID-19 agents, cepharanthine and nelfinavir, and their usage for combination treatment. iScience, 24(4), 102367. https://doi.org/10.1016/j.isci.2021.102367

[81] Fan, H. H., Wang, L. Q., Liu, W. L., An, X. P., Liu, Z. D., He, X. Q., Song, L. H., & Tong, Y. G. (2020). Repurposing of clinically approved drugs for treatment of coronavirus disease 2019 in a 2019-novel coronavirus-related coronavirus model. Chinese Medical Journal, 133(9), 1051–1056. https://doi.org/10.1097/CM9.0000000000000797

[82] Zhang, C. H., Wang, Y. F., Liu, X. J., Lu, J. H., Qian, C. W., Wan, Z. Y., Yan, X. G., Zheng, H. Y., Zhang, M. Y., Xiong, S., Li, J. X., & Qi, S. Y. (2005). Antiviral activity of cepharanthine against severe acute respiratory syndrome coronavirus in vitro. Chinese Medical Journal, 118(6), 493–496.

[83] Jeon, S., Ko, M., Lee, J., Choi, I., Byun, S. Y., Park, S., Shum, D., & Kim, S. (2020). Identification of antiviral drug candidates against SARS-CoV-2 from FDAapproved drugs. Antimicrobial Agents and Chemotherapy, 64(7), e00819–e00820. https://doi.org/10.1128/AAC.00819-20

[84] Ruan, Z., Liu, C., Guo, Y., He, Z., Huang, X., Jia, X., & Yang, T. (2022). SARS-CoV-2 and SARS-CoV: Virtual screening of potential inhibitors targeting RNA-dependent RNA polymerase activity (NSP12). Journal of Medical Virology, 93(1), 389–400. https://doi.org/10.1002/jmv.26222

[85] Yin, W., Mao, C., Luan, X., Shen, D. D., Shen, Q., Su, H., Wang, X., Zhou, F., Zhao, W., Gao, M., Chang, S., Xie, Y. C., Tian, G., Jiang, H. W., Tao, S. C., Shen, J., Jiang, Y., Jiang, H., Xu, Y., . . . Xu, H. E. (2020). Structural basis for inhibition of the RNAdependent RNA polymerase from SARS-CoV-2 by remdesivir. Science, 368(6498), 1499–1504. https://doi.org/10.1126/science.abc1560

[86] Chen, R. E., Zhang, X., Case, J. B., Winkler, E. S., Liu, Y., VanBlargan, L. A., Liu, J., Errico, J. M., Xie, X., Suryadevara, N., Gilchuk, P., Zost, S. J., Tahan, S., Droit, L., Turner, J. S., Kim, W., Schmitz, A. J., Thapa, M., Wang, D., . . . Diamond, M. S. (2022). Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nature Medicine, 27(4), 717– 726. https://doi.org/10.1038/s41591-021-01294-w

[87] U.S. Food and Drug Administration. (2022). Coronavirus (COVID-19) update: FDA authorizes additional monoclonal antibody for treatment of COVID-19. Available from: https://www.fda.gov/news-events/press-announcements/coronaviruscovid- 19-update-fda-authorizes-additional-monoclonal-antibody-treatment-covid-19 [Accessed 2021 August 12].

[88] Vanhove, B., Duvaux, O., Rousse, J., Royer, P. J., Evanno, G., Ciron, C., Lheriteau, E., Vacher, L., Gervois, N., Oger, R., Jacques, Y., Conchon, S., Salama, A., Duchi, R., Lagutina, I., Perota, A., Delahaut, P., Ledure, M., Paulus, M., . . . Soulillou, J. P. (2022). High neutralizing potency of swine glyco-humanized polyclonal antibodies against SARS-CoV-2. European Journal of Immunology, 51(6), 1412–1422. https://doi.org/10.1002/eji.202049072

[89] Tirado, S. M., & Yoon, K. J. (2003). Antibody-dependent enhancement of virus infection and disease. Viral Immunology, 16(1), 69–86. https://doi.org/10.1089/088282403763635465

[90] Vanhove, B., Marot, S., So, R. T., Gaborit, B., Evanno, G., Malet, I., Lafrogne, G., Mevel, E., Ciron, C., Royer, P. J., Lheriteau, E., Raffi, F., Bruzzone, R., Mok, C. K. P., Duvaux, O., Marcelin, A. G., & Calvez, V. (2022). XAV-19, a swine glyco-humanized polyclonal antibody against SARS-CoV-2 Spike receptor-binding domain, targets multiple epitopes and broadly neutralizes variants. Frontiers in Immunology, 12, 761250. https://doi.org/10.3389/fimmu.2021.761250

[91] Gaborit, B., Dailly, E., Vanhove, B., Josien, R., Lacombe, K., Dubee, V., Ferre, V., Brouard, S., Ader, F., Vibet, M. A., Le Thuaut, A., Danger, R., Flet, L., Omnes, A., Berly, L., Chiffoleau, A., Jobert, A., Duvaux, O., Raffi, F., & the POLYCOR Trial Group. (2022). Pharmacokinetics and safety of XAV-19, a swine glyco-humanized polyclonal anti-SARS-CoV-2 antibody, for COVID-19-related moderate pneumonia: A randomized, double-blind, placebo-controlled, phase IIa study. Antimicrobial Agents and Chemotherapy, 65(9), e0123721. https://doi.org/10.1128/AAC.01237-21

[92] Davies, N. G., Abbott, S., Barnard, R. C., Jarvis, C. I., Kucharski, A. J., Munday, J. D., Pearson, C. A. B., Russell, T. W., Tully, D. C., Washburne, A. D., Wenseleers, T., Gimma, A., Waites, W., Wong, K. L. M., van Zandvoort, K., Silverman, J. D., Diaz-Ordaz, K., Keogh, R., Eggo, R. M., . . . Edmunds, W. J., & the CMMID COVID-19 Working Group, & the COVID-19 Genomics UK (COG-UK) Consortium. (2022). Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science, 372(6538), eabg3055. https://doi.org/10.1126/science.abg3055

[93] Department of Health and Social Care. (2022). NERVTAG paper on COVID-19 variant of concern B.1.1.7. Available from: https://www.gov.uk/government/publications/nervtag-paper-on-covid-19-variantof- concern-b117 [Accessed 2021 August 12].

[94] Wu, K., Werner, A. P., Moliva, J. I., . . .. (2022). mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants. bioRxiv. https://doi.org/10.1101/2021.01.25.427948

[95] Kuzmina, A., Khalaila, Y., Voloshin, O., Keren-Naus, A., Boehm-Cohen, L., Raviv, Y., Shemer-Avni, Y., Rosenberg, E., & Taube, R. (2022). SARS-CoV- 2 spike variants exhibit differential infectivity and neutralization resistance to convalescent or post-vaccination sera. Cell Host & Microbe, 29(4), 522–528.e2. https://doi.org/10.1016/j.chom.2021.03.008

[96] Mahase, E. (2022). Covid-19: Novavax vaccine efficacy is 86% against UK variant and 60% against South African variant. BMJ (Clinical Research Ed.), 372(296), n296. https://doi.org/10.1136/bmj.n296

[97] Wang, P., Nair, M. S., Liu, L., Iketani, S., Luo, Y., Guo, Y., Wang, M., Yu, J., Zhang, B., Kwong, P. D., Graham, B. S., Mascola, J. R., Chang, J. Y., Yin, M. T., Sobieszczyk, M., Kyratsous, C. A., Shapiro, L., Sheng, Z., Huang, Y., & Ho, D. D. (2022). Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature, 593(7857), 130–135. https://doi.org/10.1038/s41586-021-03398-2

[98] Yang, W., & Shaman, J. (2022). COVID-19 pandemic dynamics in India, the SARSCoV- 2 Delta variant, and implications for vaccination. medRxiv: the preprint server for health sciences. https://doi.org/10.1101/2021.06.21.21259268

[99] Mishra, S. (2022). The Delta variant is spreading fast, especially where vaccination rates are low. Available from: https://www.nationalgeographic.com/science/article/the-delta-variant-is-seriousheres- why-its-on-the-rise [Accessed 2021 August 12].

[100] Wolters Kluwer. (2022). Lexicomp. Available from: http://online.lexi.com [Accessed 2021 August 12].

[101] González Canga, A., Sahagún Prieto, A. M., Diez Liébana, M. J., Fernández Martínez, N., Sierra Vega, M., & García Vieitez, J. J. (2008). The pharmacokinetics and interactions of ivermectin in humans—A mini-review. The AAPS Journal, 10(1), 42–46. https://doi.org/10.1208/s12248-007-9000-9

Download
HTML
Cite
Share
statistics

628 Abstract Views

306 PDF Downloads