KnE Life Sciences

ISSN: 2413-0877

The latest conference proceedings on life sciences, medicine and pharmacology.

Implementation of an Artificial Neural Network on the Test Barcelona Workstation As a Predictive Model for the Classification of Normal, Mild Cognitive Impairment and Alzheimer’s Disease Subjects Using the Neuronorma Battery

Published date:Nov 01 2018

Journal Title: KnE Life Sciences

Issue title: The Fifth International Luria Memorial Congress «Lurian Approach in International Psychological Science»

Pages:763–772

DOI: 10.18502/kls.v4i8.3334

Authors:
Abstract:

Objective: To develop and implement an online Artificial Neural Network (ANN) that provides the probability of a subject having mild cognitive impairment (MCI) or Alzheimer’s disease (AD).


Method: Different ANNs were trained using a sample of 350 controls (CONT), 75 MCI and 93 AD subjects. The ANN structure chosen was the following: (1) an input layer of 33 cognitive variables from the Neuronorma battery plus two sociodemographic variables, age and education. This layer was reduced to a 15 features input vector using Multiple Discriminant Analysis method, (2) one hidden layer with 8 neurons, and (3) three output neurons corresponding to the 3 expected cognitive states. This ANN was defined in a previous study [28]. The ANN was implemented on the web site www.test-barcelona.com (Test Barcelona Workstation) [9].


Results: When comparing CONT, MCI and AD participants, the best ANN correctly classifies up to 94,87% of the study participants.


Conclusions: The online implemented ANN, delivers the probabilities (%) of belonging to the CONT, MCI and AD groups of a subject assessed using the 35 characteristics (variables) of the Neuronorma profile. This tool is a good complement for the interpretation of cognitive profiles. This technology improves clinical decision making.


Keywords: Artificial Neural Network, Probability, Alzheimer disease, Test Barcelona Workstation.

References:

[1] Amato, F., López, A., Peña-Méndez, E. M., Vaňhara, P., Hampl, A., & Havel, J. (2013). Artificial neural networks in medical diagnosis. Journal of Applied Biomedicine, 11, 47-58.


[2] Benton, A. L., Sivan, A. B., Hamsher, K. S., Varney, N. R., & Spreen, O. (1994). Contributions to neuropsychological assessment. New York, NY: Oxford University Press.


[3] Buschke, H. (1984). Cuedrecallin amnesia. Journal of Clinical Neuropsychology, 6, 433-440.


[4] Buscema, M. P., Grossi, E., Snowdon, D., Antuono, P., Intraligi, M., Maurelli, G., et al. (2004). Artificial Neural Networks and Artificial Organisms Can Predict Alzheimer Pathology in Individual Patients Only on The Basis of Cognitive and Functional Status. Neuroinformatics, 2, 399-416.


[5] Culbertson, W. C., & Zillmer, E. A. (2001). Tower of London. Drexel University. TOLDX. North Tonawanda, NY: Multi-Health Systems.


[6] De Renzi, E., & Faglioni, P. (1978). Development of a shortened version of the Token Test. Cortex, 14, 41-49.


[7] Di Luca, M., Grossi, E., Borroni, B., Zimmermann, M., Marcello, E., Colciaghi, F., et al. (2005). Artificial neural networks allow the use of simultaneous measurements of Alzheimer Disease markers for early detection of the disease. Journal of Translational Medicine, 3, 1-7.


[8] Golden, C. J. (1978). Stroop Color and Word Test. Chicago, IL: Stoeling.


[9] Gumbau, G. (2018). Programació del sistema de comunicacions entre dos servidors per aplicacions biomèdiques. Barcelona: Universitat Politèctica de Catalunya.


[10] Kaplan, E., Fein, D., Morris, R., & Delis, D. (1991). WAIS-R as a neuropsychological instrument. San Antonio, TX: The Psychological Corporation.


[11] Kaplan, E., Goodglass, H., & Weintraub, S. (2001). The Boston Naming Test (2nd ed.). Philadelphia, PA: Lippincott Williams & Wilkins.


[12] Lezak, M. D., Howieson, D. B., Bigler, E. D., & Tranel, D. (2012). Neuropsychological Assessment (Fifth ed.). New York: Oxford University Press, Inc.


[13] Osterrieth, P. A. (1944). Le test de copie d’une figure complexe: Contribution è l’étude de la perception et la mémoire. Archives de Psychologie, 30, 286-356.


[14] Partington, J., & Leiter, R. (1949). Partington’s pathways test. The Psychological Service Center Bulletin, 1, 9-20.


[15] Peña-Casanova, J. (2005). Programa Integrado de Exploración Neuropsicológica. Test Barcelona-Revisado. Barcelona: Masson. [Integrated program of neuropsychological assessment- Revised Barcelona Test].


[16] Peña-Casanova, J., Blesa, R., Aguilar, M., Gramunt-Fombuena, N., Gómez-Ansón, B., Oliva, R., et al. (2009). Spanish Multicenter Normative Studies (NEURONORMA Project): methods and sample characteristics. Archives of Clinical Neuropsychology, 24, 307-319.


[17] Peña-Casanova, J., Quiñones-Úbeda, S., Quintana-Aparicio, M., Aguilar, M., Badenes, D., Molinuevo, J.L., et al. (2009). Spanish Multicenter Normative Studies (NEURONORMA Project): norms for verbal span, visuospatial span, letter and number sequencing, trail making test, and symbol digit modalities test. Archives of Clinical Neuropsychology, 24, 321-341.


[18] Peña-Casanova, J., Quiñones-Úbeda, S., Gramunt-Fombuena, N., Aguilar, M., Casas, L., Molinuevo, J.L., et al. (2009). Spanish Multicenter Normative Studies (NEURONORMA Project): norms for Boston naming test and token test. Archives of Clinical Neuropsychology, 24, 343-354.


[19] Peña-Casanova, J., Quiñones-Úbeda, S., Gramunt-Fombuena, N., Quintana-Aparicio, M., Aguilar, M., Badenes, D., et al. (2009). Spanish Multicenter Normative Studies (NEURONORMA Project): norms for verbal fluency tests. Archives of Clinical Neuropsychology, 24, 395-411.


[20] Peña-Casanova, J., Gramunt-Fombuena, N., Quiñones-Úbeda, S., SánchezBenavides, G., Aguilar, M., Badenes, D., et al. (2009). Spanish Multicenter Normative Studies (NEURONORMA Project): norms for the Rey-Osterrieth complex figure (copy and memory), and free and cued selective reminding test. Archives of Clinical Neuropsychology, 24, 371-393.


[21] Peña-Casanova, J., Quiñones-Úbeda, S., Gramunt-Fombuena, N., Quintana-Aparicio, M., Aguilar, M., Molinuevo, J.L., et al. (2009). Spanish Multicenter Normative Studies (NEURONORMA Project): norms for the Stroop color-word interference test and the Tower of London-Drexel. Archives of Clinical Neuropsychology, 24, 413-429.


[22] Peña-Casanova, J., Quintana-Aparicio, M., Quiñones-Úbeda, S., Aguilar, M., Molinuevo, J.L., Serradell, M., et al. (2009). Spanish Multicenter Normative Studies (NEURONORMA Project): norms for the visual object and space perception batteryabbreviated, and judgment of line orientation. Archives of Clinical Neuropsychology, 24, 355-370.


[23] Peña-Casanova, J., Sánchez-Benavides, G., de Sola, S., Manero-Borrás, R. M., & Casals-Coll, M. (2012). Neuropsychology of Alzheimer’s Disease. Archives of Medical Research, 43, 686-693.


[24] Petersen, R. C., Smith, G. E., Waring, S. C., Invik, R. J., Tangalos, E. G., & Kokmen, E. (1999). Mild cognitive impairment: Clinical characterization and outcome. Archives of Neurology, 56, 303-308.


[25] Quintana, M., Guàrdia, J., Sánchez-Benavides, G., Aguilar, M., Molinuevo, J. L., Robles, A., et al. (2012). Using artificial neural networks in clinical neuropsychology: High performance in mild cognitive impairment and Alzheimer’s disease. Journal of Clinical and Experimental Neuropsychology, 34, 195-208.


[26] Reitan, R. M., & Wolfson, D. (1993). The Halstead-Reitan neuropsychological test battery. Theory and clinical interpretation (2nd ed.). Tucson, AZ: Neuropsychology Press.


[27] Rey, A. (1941). L’examen psychologique dans les cas d’encéphalopathie traumatique. Archives de Psychologie, 28, 286-340.


[28] Rivera, N. (2016). Predicció de la demència tipus Alzheimer mitjançant xarxes neuronals a partir de dades cognitives. Barcelona: Universitat Politèctica de Catalunya.


[29] Smith, A. (1973). Symbol Digit Modalities Test Manual. Los Angeles: Western Psychological Services.


[30] Warrington, E. K., & James, M. (1991). Visual Object and Space Perception Battery. Suffolk: Thames Valley Test Co.


[31] Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L.O., et al. (2004). Mild cognitive impairment–beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. Journal of Internal Medicine, 256, 240-246.

Recommendations
THE BALANCE BETWEEN INTERLEUKIN 5 AND INTERLEUKIN 10 LEVEL IN PERSISTENT ATOPIC ASTHMA AFTER HOUSE DUST MITE ALLERGEN DERMATOPHAIGOIDES PTERONYSSINUS (DER P) STIMULATION
R. Handayani et al., KNE LIFE SCIENCES, 2020
CONCEPT OF MICROCLIMATE IN RUSSIAN LEGISLATION
I. Gaponenkov et al., KNE LIFE SCIENCES, 2020
POTENTIAL ANTICANCER ACTIVITY OF CAESALPINIA SAPPAN LINN., IN SILICO AND IN VITRO STUDIES
Suyatmi et al., KNE LIFE SCIENCES, 2019
EFFECT OF COMBINATION OF KEGEL'S EXERCISE AND BLADDER TRAINING IN REDUCING URINE INNCONTINENCY EPISODES IN ELDERLY IN PERSAHABATAN HOSPITAL, JAKARTA
Sumedi et al., KNE LIFE SCIENCES, 2021
RISK FACTORS ASSOCIATED WITH END-STAGE RENAL DISEASE IN TYPE 2 DIABETES MELLITUS PATIENTS
S. T. Putri, KNE LIFE SCIENCES, 2021
FEATURES OF RUSSIAN AGRIBUSINESS GRAPE-WINERY SUBCOMPLEX MODERNIZATION
I. U. Spakhgiraev et al., KNE LIFE SCIENCES, 2019
THE AGREEMENT LEVEL OF TUBERCULIN SKIN TEST (TST) AND T-SPOT.TB EXAMINATIONS IN DETECTING LATENT TUBERCULOSIS INFECTION IN ILLICIT DRUG USERS
S. Hamdani et al., KNE LIFE SCIENCES, 2019
THE EFFECT OF CLINICAL MODEL SUPERVISION AND ACADEMIC MODEL SUPERVISION ON NURSING CARE AT THE COMMUNITY HEALTH CENTER OF SUKABUMI REGENCY
Hadi Abdillah et al., KNE LIFE SCIENCES, 2021
SEAWEEDS OF PROTECTED AREA OF KANDALAKSHA BAY - THE CONTINUITY PHYTOCENOSIS GUARANTOR
G. Shklyarevich et al., KNE LIFE SCIENCES, 2020
STUDY OF THE INFLUENCE OF BAKERY AGENTS ON THE QUALITY OF FINISHED PRODUCTS
V. Volchenko et al., KNE LIFE SCIENCES, 2020
Powered by
Download
HTML
Cite
Share
statistics

324 Abstract Views

283 PDF Downloads