KnE Social Sciences

ISSN: 2518-668X

The latest conference proceedings on humanities, arts and social sciences.

Mathematical Model of Avian Influenza Epidemics with Vaccinating Poultry and Giving Treatment to Quarantined Infected Human

Published date:Jul 03 2019

Journal Title: KnE Social Sciences

Issue title: UNNES International Conference on Research Innovation and Commercialization 2018

Pages:397–407

DOI: 10.18502/kss.v3i18.4731

Authors:

Muhammad Khariskharis.mat@mail.unnes.ac.idDepartment of Mathematics, Universitas Negeri Semarang, Indonesia

Amidi AmidiDepartment of Mathematics, Universitas Negeri Semarang, Indonesia

Arief Agoestanto Department of Mathematics, Universitas Negeri Semarang, Indonesia

Abstract:

Avian Influenza epidemics have an impact on human life both in the health and economic fields. This epidemic is one of major problem that causes the infected human get hospitalization. Some action are needed to prevent and reduce the impact of this outbreak. The actions which were done are vaccination in poultry, burning infected poultry, quarantining and giving treatment infected humans.

 

 

Keywords: Avian Influenza; vaccination; Mathematical Model; Equilibrium Point; Stability

References:

[1] Perdue, M.L. 2008. Molecular Determinants of Pathogenicity for Avian Influenza. Viruses. Avian Influenza edited by David E. Swayne 1st ed. Blackwell Publishing


[2] Sedyaningsih, E.R., Setiawaty, V., Rif’ati, L., Harun, S., Heriyanto, B., Nur AP, K., Apsari P, H., Isfarandi, S., Sarivadi, E., Saptiawati, C., dan Tresnaningsih, E. 2006. Karakteristik Epidemiologi Kasus-kasus FLu Burung di Indonesia Juli 2005 - Oktober 2006. Bul. Penel. Kesehatan, Vol. 34, No. 4 2006:137-146


[3] Scoones, I. and Forster, P. 2008. The International Response to Highly Pathogenic Avian Influenza: Science, Policy and Politics, STEPS Working Paper 10, Brighton: STEPS Centre.


[4] Anggoro, A.D., Kharis, M., and Supriyono. 2013. Pemodelan SIRPS Untuk Penyakit Influenza Dengan Vaksinasi Pada Populasi Konstan. Unnes Journal of Mathematics. 2(1):55-56.


[5] Aulia, N., Kharis, M., and Supriyono. 2016. Pemodelan Matematika Epidemi Influenza Dengan Memperhatikan Peluang Keberhasilan Vaksinasi dan Kekebalan Tetap. Unnes Journal Of Mathematics. 5(2):192.


[6] Widiasih, D.A., Susetya, H., Sumiarto, B., Tabbu, C.R., dan Budiharta, S. 2006. Kajian Kasus Kontrol Avian Influenza pada Unggas di Jawa Timur, Jawa Tengah, dan Daerah Istimewa Yogyakarta. J. Sain Vet. Vol. 24 No 1 Th. 2006: 71 – 76.


[7] de Jong, M.D., Thanh, T.T., Khanh, T.H., Hien, V.M., Smith, G.J.D., Chau, N.V., Cam, B.V., Qui, P.T., Quang Ha, D., Guan, Y., Peiris, J.S.M., Hien, T.T., & Farrar, J., 2005, Oseltamivir Resistance during Treatment of Influenza A (H5N1) Infection, N Engl J Med 353 (25): 2667 – 2672


[8] Gooskens, J., Jonges, M., Claas, E.C.J., Meijer, A., van den Broek, P.J., & Kroes, A.C.M., 2009, Morbidity and Mortality Associated With Nosocomial Transmission of Oseltamivir-Resistant Influenza A(H1N1) Virus. JAMA. 2009;301(10):1042-1046

Download
HTML
Cite
Share
statistics

192 Abstract Views

248 PDF Downloads