KnE Social Sciences

ISSN: 2518-668X

The latest conference proceedings on humanities, arts and social sciences.

Analysis of Human Development Index of 13 Districts in West Kalimantan

Published date: Nov 12 2018

Journal Title: KnE Social Sciences

Issue title: The 2018 International Conference of Organizational Innovation (ICOI-2018)

Pages:

DOI: 10.18502/kss.v3i10.3433

Authors:
Abstract:

Human Development Index (HDI) is an indicator that becomes a prominent aspect reflecting the achievement of income, education, and health of community in a region. West Kalimantan, one of the provinces in Indonesia, is ranked 29 out of 34 provinces in terms of HDI. In addition, HDI of the province is the worst one among other five provinces in Kalimantan. For that reason, it is crucial to conduct research on influential factors that affect West Kalimantan’s HDI. There are three factors projected to give impact to HDI in this research. Those factors are Labor Force of Participation Rate (LFPR), Population Density (PD), and Poverty Level (PL). Data of the three factors from 13 districts in the province will be analyzed by panel regression and biplot. Panel regression used in this research assumes that there is no time-specific effect, slope coefficients are constant, and the intercepts vary across individuals. According to the result of analysis, it can be summarized that the fixed effect with adjusted determination-coefficient of 0.69 is the best model to analyze this case, where the three factors are statistically significant to HDI of the districts. After getting variables influencing HDI, biplot analysis with alpha 0 was conducted to the data. The latter analysis concluded that there was a strong and positive correlation between PL and LFPR. Moreover, the biplot analysis summarized that Sambas, Bengkayang, Mempawah, Sanggau, Sintang, Kapuas Hulu, Sekadau, and Melawi have a bigger number of LFPR rather than the other districts.

 

 

Keywords: longitudinal, descriptive, singular-value-decomposition

References:

[1] BPS-Statistics Indonesia. (2017). Human Development Index 2016. BPS-Stat.


[2] Heriyanto, D. (2012). Analisis Faktor-Faktor yang Mempengaruhi Indeks Pembangunan Manusia (IPM) Kabupaten/Kota di Provinsi Kalimantan Barat Tahun 2006-2010. Jurnal Ekonomi Daerah, vol. 1, no. 1, pp. 1–18.


[3] Ayunanda, M. and Zain, I. (2013). Analisis Statistika Faktor yang Mempengaruhi Indeks Pembangunan Manusia di Kabupaten/Kota Provinsi Jawa Timur dengan Menggunakan Regresi Panel. Jurnal Sains dan Seni POMITS, vol. 2, no. 2, pp. 237–242.


[4] Rustariyuni, S. D. (2014). Pengaruh Gini Ratio, Pengeluaran Non Makanan per Kapita, Belanja Daerah dan Laju Pertumbuhan Ekonomi Pada Indeks Pembangunan Manusia Kabupaten/Kota di Provinsi Bali Periode 2004-2012. Jurnal Piramida, vol. X, no. 1, pp. 45–55.


[5] Destilunna, F. G. and Zain, I., (2015). Pengaruh dan Pemetaan Pendidikan, Kesehatan, serta UMKM terhadap Indeks Pembangunan Manusia di Jawa Timur Menggunakan Regresi Panel dan Biplot. Jurnal Sains dan Seni ITS, vol. 4, no. 2, pp. 292–298.


[6] Nurhasanah, S. N. and Nelva, A. (2016). Penentuan Karakteristik Pariwisata dan Model Jumlah Wisatawan untuk Kabupaten/Kota di Provinsi Aceh. Jurnal Natural, vol. 16, no. 1, pp. 43–50.


[7] Heriyanto, B. and Kinansi, R. R. (2013). Analisis Biplot pada Data kasus Penyakit di Beberapa Daerah di Indonesia Tahun 2009. Bulletin Penelitian Kesehatan, vol. 41, no. 2, pp. 120–130.


[8] BPS of West Kalimantan. (2014–2016). Human Development Index. Pontianak: BPS of West Kalimantan.


[9] Baltagi, B. H. (2005). The one-way error component regression model, in Econometric Analysis of Panel Data (third edition). England: The Atrium, John Wiley and Sons, Ltd.


[10] Hsiao, C. (2014). Simple Regression with Variable Intercepts, in Analysis of Panel Data (third edition). USA: Cambridge University Press.


[11] Sulistianingsih, et al. (2017). Analysis of palm oil production, export, and government consumption to gross domestic product of five districts in West Kalimantan by panel regression. Journal of Physics: Conference Series, vol. 824, no. 1.


[12] Jollife, I. T. (2010). Principal Component Analysis (second edition). New York, NY: Springer.


[13] Mattjik, A. A. and Sumertajaya, I. M. (2011). Sidik Peubah Ganda. Bogor: IPB Press.


[14] Chalid, N. (2014). Pengaruh Tingkat Kemiskinan, Tingkat Pengangguran, Upah
Minimum Kabupaten/Kota dan Laju Pertumbuhan Ekonomi terhadap Indeks Pembangunan Manusia di Riau. Jurnal Ekonomi Universitas Riau, vol. 22, no. 2, pp. 1–12.


[15] Gabriel, K. R. (1971). The Biplot graphics display of matrices with applications for principal component analysis. Biometrika, vol. 58, no. 3, pp. 453–467.

Download
HTML
Cite
Share
statistics

395 Abstract Views

245 PDF Downloads