KnE Materials Science

ISSN: 2519-1438

The latest conference proceedings on physical materials, energy materials, electrical materials.

Gold Determination Problem in Barium Production Waste

Published date: Dec 31 2020

Journal Title: KnE Materials Science

Issue title: IV Congress “Fundamental Research and Applied Developing of Recycling and Utilization Processes of Technogenic Formations” Volume 2020

Pages: 580–585

DOI: 10.18502/kms.v6i1.8147

Authors:

R.E. KhabibulinaUral Federal University, Russia

K.D. Naumov, V.G.naumov.konstantin@urfu.ruUral Federal University, Russia

V.G. LobanovUral Federal University, Russia

V.A. ValnevUral Federal University, Russia

Abstract:

The most common method for gold content determination in raw materials is fire assay. An alternative to this method is atomic absorption in a solution obtained by dissolving an initial sample in aqua regia. This study focuses on the sludge of one of the chemical plants, in which the barite concentrate (barium in sulphate form) is fused with calcium chloride at coal presence, and then leached in water. Decomposition of samples in aqua regia followed by atomic absorption analysis, as well as fire assay, showed gold content in the sludge at the level of 1-4 gram per ton. The presence of infusible and chemically resistant compounds in the sludge does not allow to the reliable determination of the gold content. Sintering with sodium peroxide for decomposition of stable compounds at 700 ∘ C, dissolution of sinter in acidic solution, evaporation and fire assay of residue made it possible to establish a reliable concentration of gold in the sludge - 10-20 gram per ton. It was found that a direct determination of gold in acidic sinter leach solution provides inadequate values associated with the influence of the background.

Keywords: Gold determination, barium sludge, fire assay, atomic absorption

References:

[1] Kotlyar, U. A. (2005). Metallurgia Blagorodnih Metallov. Moscow: Ruda I metalli, p. 432.

[2] Maslenitskii, I. N. (1987). Metallurgia Blagorodnih Metallov. Moscow: Metallurgia, p. 366.

[3] Bredihin, V. N. (2009). Blagorodnie Metalli. Donetsk: DonNTU, p. 525.

[4] Adams, M. D. (2005). Advances in Gold Ore Processing. Boston: Elsevier, p. 1028.

[5] Savitskii, E.M. (1984). Blagorodnie Metalli. Moscow: Metallurgia, p. 592.

[6] Seredin, V. V. (2007). Raspredelenie i uslovia formirovania blagorodnometalnogo orudnenia d uglenosnih vpadinah. Moscow: Geologia rudnih mestorozdenii p. 3-36.

[7] Kuzminih V. M. (2009). Formi nahozdenia i pereraspredelenia zolota po fazam pri goreii uglei / Innovacionnie processi v tehnologii kompleksnoi ecologichesko bezopasnoi pererabotke mineralnogo I netradicionnogo siria. Novosibirsk: Ruda I metallic, p. 274-276.

[8] Patent RU 2245931. Sposob opredelenia soderzhania zolota v zolotosoderzhashem sirie / Kuzminih V. M. and Churzina L.A., published February 20, 2014.

[9] Patent RU 93803. Ustanovka dlia izvlechenia zolota iz dimovih gazov. Kuzminih V. M., et al. published May 10, 2010.

[10] Patent RU 155764. Ustroistvo dlia izvlechenia zolota iz dimovih gazov pri sgoranii prirodnih uglei. Kuzminih V. M., et al., published December 20, 2015.

[11] Shvecov, V. A. (2006). Probirnii analiz pri razvedke zolotorudnih mestorozhdenii. (Diss. Doct. Tehn. nauk. Irkutsk, 2006). Kamchatka State Technical University.

[12] Meretukov, M. A. (2013). Nanogeohimia I nanomineralogia zolota. Gornii zhurnal, pp. 13-19.

[13] Barishnikov, I. F. (1968). Probootbiranie I analiz blagorodnih metallov: spravochnoe rukovodstvo dlia laboratorii. Moscow: Metallurgia. p. 398.

[14] Patent RU 2288288. Sposob probirnogo opredelenia zolota d rudah I produktah ih pererabotki. Serebrznii, B. L., et al, published November 27, 2016.

[15] Zhukov, I. A. (2000). Probirnii analiz. Metodi opredelenia blagorodnih metallov v suhih sipuchih probah. Irkutsk: IrGTU, p. 82.

[16] Bok, R. (1984). Metodi razlozhenia d analiticheskoi himii. Moscow: Himia, p. 432.

Download
HTML
Cite
Share
statistics

316 Abstract Views

363 PDF Downloads