KnE Materials Science

ISSN: 2519-1438

The latest conference proceedings on physical materials, energy materials, electrical materials.

Optical Properties of Cu2S/SnS2 Precursor Layers for the Preparation of Kesterite Cu2SnS3 Photovoltaic Absorber

Published date: Oct 14 2018

Journal Title: KnE Materials Science

Issue title: Sino-Russian ASRTU Conference Alternative Energy: Materials, Technologies, and Devices

Pages: 39–44

DOI: 10.18502/kms.v4i2.3035

Authors:
Abstract:

The Cu2S and SnS2 layers have been prepared by the chemical bath deposition method. The results of SEM and EDX analyses confirm a high stoichiometry of the synthesized semiconductor thin films. The optical properties of the Cu2S and SnS2 layers have been studied, and the optical band gap values have been determined.

Keywords: thin films, sulfides, band gap, hydrochemical deposition, transmittance, photovoltaic absorber

References:

[1] Jackson, P., Wuerz, R., Hariskos, D., et al. (2016). Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%. Physica Status Solidi RRL, vol.10, pp. 583–586.


[2] Nakashima, M., Yamaguchi, T., Itani, H., et al. (2015). Cu2SnS3 thin film solar cells prepared by thermal crystallization of evaporated Cu/Sn precursors in sulfur and tin atmosphere. Physica Status Solidi C., vol. 12, pp. 761–764.


[3] Zawadzki, P., Baranowski, L. L., Peng, H. W., et al. (2013). Evaluation of photovoltaic materials within the Cu Sn–S family. Applied Physics Letters, vol. 103, p. 253902.


[4] Fu, H. (2018). Environmental-friendly and earth-abundant colloidal chalcogenide nanocrystals for photovoltaics applications. Journal of Materials Chemistry C, vol. 6,pp. 414–445.


[5] Avellaneda, D., Nair, M. T. S., and Nair, P. K. (2010). Cu2SnS3 and Cu4SnS4 thin films via chemical deposition for photovoltaic application. Journal of the Electrochemical Society, vol. 157, pp. D346–D352.


[6] Berg, D. M., Djemour, R., Gütay, L., et al. (2012). The film solar cells based on the ternary compound Cu2SnS3.Thin Solid Films, vol. 520, pp. 6291–6294.


[7] Nakashima, M., Fujimoto, J., Yamaguchi, T., et al. (2015). Cu2SnS3 thin film solar cells fabricated by sulfurization from NaF/Cu/Sn stacked precursor. Applied Physics Express, vol. 8, p. 42303.


[8] Braunger, D., Hariskos, D., Walter, T., et al. (1996). Sequential processes for the deposition of polycystalline Cu(In,Ga)(S,Se)2 thin films: Growth mechanism and devices. Solar Energy Materials and Solar Cells, vol. 40, pp. 97–102.


[9] Wang, W., Winkler, M. T., Gunawan, O., et al. (2014). Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Advanced Energy Materials, vol. 4, p. 1301465.


[10] Chen, Q., Dou, X., Ni, Y., et al. (2012). Study and enhance the photovoltaic properties of narrow-bangap Cu2SnS3 solar cell by p-n junction interface modification. Journal of Colloid and Interface Science, vol. 376, pp. 327–330.


[11] Nakashima, M., Fujimoto, J., Yamaguchi, T., et al. (2017). KF addition to Cu2SnS3
thin films prepared by sulfurization process. Japanese Journal of Applied Physics, vol. 56, pp. 2C–4C.


[12] Ruan, C., Tao, J., Zhu, C., et al. (2018). Effect of potassium doping for ultrasonic
sprayed Cu2SnS3 thin films for solar cell application. Journal of Materials Science: Materials in Electronics. Retrieved from https://doi.org/10.1007/s10854-018-9401-9


[13] Amlouk, M., Dachraoui, M., Belgacem, S., et al. (1987). Structural, optical and electrical properties of SnO2
:F and CdS airless sprayed layers. Solar Energy Materials and Solar Cells, vol. 15, pp. 453–461.


[14] Tauc, J. and Abeles, F. (1970). Optical Properties of Solids. Amsterdam: IOP Publishing Ltd.


[15] Mulder, B. J. (1973). Optical properties of an unusual form of thin chalcosite (Cu2S) crystals. Physica Status Solidi A, vol. 15, pp. 409–413.


[16] Ramya, M. and Ganesan, S. (2013). Influence of thickness and temperature on the properties of Cu2S thin films. Iranian Journal of Science and Technology, vol. 37A3, pp.293–300.


[17] Acharya, S. and Srivastava, O. N. (1981). Electronic behaviour of SnS2 crystals. Physica Status Solidi A, vol. 65, pp. 717–723.


[18] Zhu, X., Luo, X., Yuan, H., et al. (2018). Band gap engineering of SnS2 nanosheets by anion-anion codoping for visible-light photocatalysis. RSC Advances, vol. 8, pp.3304–3311.

Download
HTML
Cite
Share
statistics

671 Abstract Views

310 PDF Downloads