KnE Materials Science

ISSN: 2519-1438

The latest conference proceedings on physical materials, energy materials, electrical materials.

Simulation of Atomic Structure Near Nanovoids in BCC Iron

Published date: May 06 2018

Journal Title: KnE Materials Science

Issue title: 15th International School-Conference "New Materials – Materials of Innovative Energy" (MIE)

Pages: 451–457

DOI: 10.18502/kms.v4i1.2197

Authors:
Abstract:

Generally, displacement fields near voids are determined by the equations of elasticity theory. Such a description has its disadvantages as it does not take into account the discrete atomic structure of materials. In this work, we use a new variant of Molecular Static method for investigation of the atomic structure near nanovoids. In our model an iterative procedure is employed, in which the atomic structure in the void vicinity and the parameter determining the displacement of atoms embedded into an elastic continuum are obtained in a self-consistent manner. Results show that the displacements are significantly different for varies crystallographic directions.

Keywords: voids; iron; simulation; atomic structure; vacancies

References:

[1] G. S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys, Springer, New York, 2007.


[2] L. D. Landau, E. M. Lifshitz, Theory of Elasticity, Elsevier, 1986.


[3] I. V. Valikova, A. V. Nazarov, Defect Diffus. Forum 277 (2008) 125.


[4] I. V. Valikova, A. V. Nazarov, Phys. Met. Metallogr.105 (2008) 544.


[5] I. V. Valikova, A. V. Nazarov, Phys. Met. Metallogr. 109 (2010) 220.


[6] J.-W. Jang, J. Kwon, B.-J.Lee, Scripta Mat. 63 Issue:1 (2010) 39.


[7] I. V. Valikova, A. V. Nazarov, Solid State Phenomena 172-174 (2011) 1222.


[8] A. B. Germanov, I. V.Ershova, E. V. Kislitskaya,A. V. Nazarov, A. G. Zaluzhnyi, Metal Physics and Advanced Technologies, 35 (2013) 1391.


[9] R. A. Johnson, Phys. Rev. A 134 (1964) 1329.


[10] G.J. Ackland, D.J. Bacon, A.F. Calder, T. Harry, Philos. Mag. A 75 (1997) 713.


[11] B. Ya. Lyubov, The Kinetic Theory of Phase Transformations. Metallurgiya, Moscow, 1969. (in Russian). There is translation: B. Y. Lyubov, Kinetic Theory of Phase Transformation ∼National Bureau of Standards, Amerind, New Delhi, 1978.


[12] A.V.Nazarov, A.A. Mikheev, Defect Diffus. Forum 363 (2015) 112.


[13] A.A. Mikheev, A.V. Nazarov, I.V. Ershova, A.G. Zaluzhnyi, Defect Diffus. Forum 363 (2015) 91.


[14] A. M. Gusak, T. V. Zaporozhets, Y. O. Lyashenko, S. V. Kornienko, M. O. Pasichnyy, and A. S. Shirinyan, Diffusion-Controlled Solid State Reactions: in Alloys, Thin-Films, and Nanosystems, New York, John Wiley and Sons, 2010.


[15] A. Paul, T. Laurila, V. Vuorinen, S.V. Divinski, Thermodynamics, Diffusion and the Kirkendall Effect in Solids, Springer, 2014.

Download
HTML
Cite
Share
statistics

209 Abstract Views

201 PDF Downloads