KnE Materials Science

ISSN: 2519-1438

The latest conference proceedings on physical materials, energy materials, electrical materials.

Contribution of Hardening Mechanism to VVER-1000 RPV Welds Flux Effect

Published date: May 06 2018

Journal Title: KnE Materials Science

Issue title: 15th International School-Conference "New Materials – Materials of Innovative Energy" (MIE)

Pages: 414–420

DOI: 10.18502/kms.v4i1.2192

Authors:
Abstract:

Systematic differences in the radiation embrittlement kinetics of steels irradiated with different fluxes requires a clear understanding and assessment of the mechanisms responsible for the flux effect. This paper presents results of research of hardening mechanism contribution to flux effect of VVER-1000 reactor pressure vessel (RPV) welds. Transmission electron microscopy (TEM) and atom probe tomography (APT) investigations were carried out. Studies of hardening phases of RPV-steel (VVER-1000) after accelerated irradiation allowed to estimate the contribution of the hardening mechanism to flux effect.

Keywords: reactor pressure vessel, hardening mechanism, flux effect

References:

[1] Brumovsky M. Check of Master Curve application to embrittled RPVs of WWER type reactors. 2002. Vol. 79. P. 715–721.


[2] D. Erak, B. Gurovich, E. Kuleshova, Y. Shtrombakh, D. Zhurko, V. Papina, Radiation Embrittlement of VVER-1000 Reactor Pressure, in: 22nd Conf. Struct. Mech. React. Technol. San Fr. California, USA - August 18-23, 2013.


[3] Shtrombakh Y.I., Gurovich B.A., Kuleshova E.A., Erak D.Y., Fedotova S. V., Zhurko D.A., Zabusov O.O., Nikolaev Y.A. Experimental assessment of the effectiveness of recovery annealing of VVER-1000 vessels // At. Energy. 2011. Vol. 109. P. 257–265.


[4] Kryukov A., Nanstad R.K., Brumovsky M. Common comparison of the irradiation embrittlement of WWER / PWR reactor pressure vessel steels // Nucl. Eng. Des. Elsevier B.V., 2014. Vol. 273. P. 175–180.


[5] Miller M.K., Russell K.F., Kocik J., Keilova E. Atom probe tomography of 15Kh2MFA Cr–Mo–V steel surveillance specimens // Micron. 2001. Vol. 32, № 8. P. 749–755.


[6] Gurovich B., Kuleshova E., Shtrombakh Y., Fedotova S., Maltsev D., Frolov A., Zabusov O., Erak D., Zhurko D. Evolution of structure and properties of VVER-1000 RPV steels under accelerated irradiation up to beyond design fluences // J. Nucl. Mater. 2015. Vol. 456. P. 23–32.


[7] Gurovich B., Kuleshova E., Fedotova S., Maltsev D., Zabusov O., Frolov A., et al. 2014 In: Fontevraud 8 - Contrib. Mater. Investig. Oper. Exp. to LWRs’ Safety, Perform. Reliab. Fr. Avignon – 2014, Sept. 14–18.


[8] Gurovich B. et al. The effect of radiation-induced structural changes under accelerated irradiation on the behavior of water-cooled reactor pressure vessel steels // Key Eng. Mater. 2014. Vol. 592–593. P. 573–576.


[9] Michael K. Miller. Atom Probe Tomography: Analysis at the Atomic Level. Springer Science & Business Media, 2012. 239 p.


[10] Shtrombakh Y.I., Gurovich B.A., Kuleshova E. A., Maltsev D.A., Fedotova S. V., Chernobaeva A. A. Thermal ageing mechanisms of VVER-1000 reactor pressure vessel steels // J. Nucl. Mater. Elsevier B.V., 2014. Vol. 452, № 1–3. P. 348–358.


[11] Lambrecht M., Meslin E., Malerba L., Hernández-Mayoral M., Bergner F., Pareige P., Radiguet B., Almazouzi A. On the correlation between irradiation-induced microstructural features and the hardening of reactor pressure vessel steels // J. Nucl. Mater. Elsevier B.V., 2010. Vol. 406, № 1. P. 84–89.

Download
HTML
Cite
Share
statistics

328 Abstract Views

234 PDF Downloads