KnE Materials Science
ISSN: 2519-1438
The latest conference proceedings on physical materials, energy materials, electrical materials.
Opportunities for Microalgae-Bacteria Consortium Application to the Treatment of Effluents Generated in Fiber-Waste-Based Recycling Processes
Published date: Aug 10 2022
Journal Title: KnE Materials Science
Issue title: 1st International FibEnTech Congress (FibEnTech21) – New Opportunities for Fibrous Materials in the Ecological Transition
Pages: 157–167
Authors:
Abstract:
Technologies based on microalgae-bacteria seem to be sustainable options for wastewater treatment and reuse, with lower costs than conventional biological treatment technologies. Furthermore, they can generate added-value products produced from algae biomass. Among other advantages, the consortium bacteriaalgae produce photosynthetic oxygen through the microalgae, which can be used by aerobic bacteria for oxidizing organic matter and nitrogen, thus reducing the need for introducing artificial oxygen. In this review paper, the main systems that use microalgaebacteria consortium are discussed. Microalgae-bacteria present advantages in the removal of organics, nitrogen and phosphorus, when compared with conventional biological treatment systems (e.g., activated sludge, percolating filters and ponds), and are able to produce final effluents for reuse (e.g., in agricultural irrigation, industry or aquifer recharge) and excess of microalgae that can be converted to added-value products such as biogas and biofuels. Attention is given to the innovative aspects of applying photobioreators to the treatment and reuse of pulp and paper effluents and fiber-waste-based recycling wastewaters, which seems to open a new opportunity for the pulp, paper and recycling paper industries.
Keywords: fiber-waste-based industry, microalgae-bacteria consortium, removal of nutrients, wastewater treatment
References:
[1] Chan Y, Chong MF, Law CL. A review on anaerobic-aerobic treatment of industrial and municipal wastewater. Chemical Engineering Journal. 2009;155(1–2):1–18. https://doi.org/10.1016/j.cej.2009.06.041
[2] Gallardo-Altamirano MJ, Maza-Márquez P, Montemurro N, Rodelas B, Osorio F, Pozo C. Linking microbial diversity and population dynamics to the removal efficiency of pharmaceutically active compounds (PhACs) in an anaerobic/anoxic/aerobic (A2O) system. Chemosphere. 2019;233:828–842. https://doi.org/10.1016/j.chemosphere.2019.06.017
[3] Goli A, Shamiri A, Khosroyar S, Talaiekhozani A, Sanaye R, Azizi K. A review on different aerobic and anaerobic treatment methods in dairy industry wastewater. Journal of Environmental Treatment Techniques. 2019;6(1):113–141.
[4] Godos I. A comparative evaluation of microalgae for the degradation of piggery wastewater under photosynthetic oxygenation. Bioresource Technology. 2010;101(14):5150–5158. https://doi.org/10.1016/j.biortech.2010.02.010
[5] Chandra R, Iqbal H, Vishal G, Lee H, Nagra S. Algal biorefinery: A sustainable approach to valorize algal-based biomass towards multiple product recovery. Bioresource. Technology. 2019;278:346–359. https://doi.org/10.1016/j.biortech.2019.01.104
[6] Ashrafi O, Yerushalmi L, Haghighat F. Wastewater treatment in the pulpand- paper industry: A review of treatment processes and the associated greenhouse gas emission. Journal Environmental. Management. 2015;158:146–157. https://doi.org/10.1016/j.jenvman.2015.05.010
[7] Lee Y, Lei Z. Microalgal-bacterial aggregates for wastewater treatment: A mini-review. Bioresource Technology Reports. 2019;8:100199. https://doi.org/10.1016/j.biteb.2019.100199
[8] Sun L. Performance and microbial community analysis of an algal-activated sludge symbiotic system: Effect of activated sludge concentration. Journal Environmental Sciences (China). 2019;76:121–132. https://doi.org/10.1016/j.jes.2018.04.010
[9] Show K, Lee D. Anaerobic treatment versus aerobic treatment. Current Developmentss in Biotechnology and Bioengineering. Elsevier. 2017; 205-230. https://doi.org/10.1016/B978-0-444-63665-2.00008-4
[10] Gupta P, Lee S, Choi H. A mini review: Photobioreactors for large scale algal cultivation. World Journal of Microbiology Biotechnology. 2015;31(9):1409–1417. https://doi.org/10.1007/s11274-015-1892-4
[11] Miao Y. Partial nitrification-anammox (PNA) treating sewage with intermittent aeration mode: Effect of influent C/N ratios. Chemical Engineering Journal. 2018;334:664– 672. https://doi.org/10.1016/j.cej.2017.10.072
[12] He Q. Natural sunlight induced rapid formation of water-born algal-bacterial granules in an aerobic bacterial granular photo-sequencing batch reactor. Journal of Hazardous Materials. 2018;359:222–230. https://doi.org/10.1016/j.jhazmat.2018.07.051
[13] Li B. Effect of TiO2 nanoparticles on aerobic granulation of algal-bacterial symbiosis system and nutrients removal from synthetic wastewater. Bioresource Technology. 2015;187:214–220. doi: 10.1016/j.biortech.2015.03.118.
[14] Zhang B. Enhancement of aerobic granulation and nutrient removal by an algal– bacterial consortium in a lab-scale photobioreactor. Chemical Engineering Journal. 2018;334:2373–2382. doi: 10.1016/j.cej.2017.11.151.
[15] Ahmad J. Stability of algal-bacterial granules in continuous-flow reactors to treat varying strength domestic wastewater. Bioresource Technology. 2017;244:225–233. doi: 10.1016/j.biortech.2017.07.134.
[16] Yang J, Gou Y, Fang F, Lu L, Zhou Y. Potential of wastewater treatment using a concentrated and suspended algal-bacterial consortium in a photo membrane bioreactor. Chemical Engineering Journal. 2018;335:154–160. doi: 10.1016/j.cej.2017.10.149.
[17] Lin C, Cao P, Xu X, B Ye. Algal-bacterial symbiosis system treating high-load printing and dyeing wastewater in continuous-flow reactors under natural light. Water (Switzerland). 2019;11, 469. doi: 10.3390/w11030469.
[18] Ji X, Jiang M, Zhang J, Zheng Z. The interactions of algae-bacteria symbiotic system and its effects on nutrients removal from synthetic wastewater. Bioresource Technology. 2017;247:44–50, 2018, doi:10.1016/j.biortech.2017.09.074.
[19] Zhao Z, Yang X, Cai W, Lei Z, Shimizu K. Response of algal-bacterial granular system to low carbon wastewater: Focus on granular stability, nutrients removal and accumulation. Bioresource Technology. 2018;268:221–229. doi: 10.1016/j.biortech.2018.07.114.
[20] Liu L, Zeng Z, Bee M, Gibson V, Wei L, Huang X. Characteristics and performance of aerobic algae-bacteria granular consortia in a photo-sequencing batch reactor. Journal of Hazardous Materials. 2018;349:135–142. doi:10.1016/j.jhazmat.2018.01.059.
[21] Corsino S, Campo R, Di Bella P, Torregrossa M, Viviani G. Study of aerobic granular sludge stability in a continuous-flow membrane bioreactor. Bioresource Technology. 2016;200:1055–1059. doi: 10.1016/j.biortech.2015.10.065.
[22] Ansari F, Shriwastav A, Gupta S, Rawat I, Bux F. Exploration of microalgae biorefinery by optimizing sequential extraction of major metabolites from Scenedesmus obliquus. Industrial & Engineering Chemistry Research. 2017;12:3407- 3412. doi:10.1021/acs.iecr.6b04814.
[23] Huang W, Li B, Zhang C, Zhang Z, Lei Z. Effect of algae growth on aerobic granulation and nutrients removal from synthetic wastewater by using sequencing batch reactors. Bioresource Technology. 2015;179:187–192. doi:10.1016/j.biortech.2014.12.024.
[24] Christenson L, Sims R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnology Advances. 2011;29(6):686–702. Doi:10.1016/j.biotechadv.2011.05.015.
[25] Mata T, Martins A, Caetano N. Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews. 2010;14(1):217– 232. doi:10.1016/j.rser.2009.07.020.
[26] Wang Y et al. Perspectives on the feasibility of using microalgae for industrial wastewater treatment. Bioresource Technology. 2016;222:485–497. doi:10.1016/j.biortech.2016.09.106.
[27] Arcila J, Buitrón G. Microalgae – bacteria aggregates: Effect of the hydraulic retention time on the municipal wastewater treatment, biomass settleability and methane potential. Journal Chemical Technology and Biotechnology. 2016; 2862-2870. doi: 10.1002/jctb.4901.
[28] Wang Y, Guo W, Yen H, Ho S, Lo Y. Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production. Bioresource Technology. 2015;198:619–625. doi:10.1016/j.biortech.2015.09.067.
[29] Lang X, Li Q, Xu Y, Ji M, Yan G. Aerobic denitrifiers with petroleum metabolizing ability isolated from caprolactam sewage treatment pool. Bioresource Technology. 2019;290:121719. doi: 10.1016/j.biortech.2019.121719.
[30] Xiong J, Kurade M, Shanab R, Ji M, Choi J, Kim J, Jeon B. Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate. Bioresource Technology. 2016;205:183–190. doi:10.1016/j.biortech.2016.01.038.
[31] Kampschreur M, Temmink H, Kleerebezem R, Jetten M. Nitrous oxide emission during wastewater treatment. Water Resource 2009;43(17):4093–4103. doi:10.1016/j.watres.2009.03.001.
[32] Häder DP. Ecotoxicological monitoring of wastewater. Bioassays Advances Methods Applications. 2018:18,369–386. doi:10.1016/B978-0-12-811861-0.00018-8.
[33] Chia S, Chew K, Leong H, Ho S, Munawaroh H, Show P. CO2 mitigation and phycoremediation of industrial flue gas and wastewater via microalgaebacteria consortium: Possibilities and challenges. Chemical Engineering Journal. 2021;425:131436. doi:10.1016/j.cej.2021.131436.
[34] Boguniewicz-Zablocka J, Klosok-Bazan I, Naddeo V, Mozejko J. Cost- effective removal of COD in the pre-treatment of wastewater from the paper industry. Water Science Technology. 2020;81(7):1345–1353. doi:10.2166/wst.2019.328.
[35] Buyukkamaci N, Koken E. Economic evaluation of alternative wastewater treatment plant options for pulp and paper industry. Science of The Total Environment 2010;408(24):6070–6078. doi:10.1016/j.scitotenv.2010.08.045.
[36] Gurumoorthy P, Saravanan A. Biofuel production from marine microalgae Nannochloropsis salina using paper mill effluents. International Journal of Mechanical Engineering Technology. 2019;10(1):1471–1477.
[37] Porto B, Gonçalves A, Esteves A, Souza S, Souza A, Vilar V, Pires J. Microalgal growth in paper industry effluent: Coupling biomass production with nutrients removal. Applied sciences. 2020;10,3009. doi:10.3390/app10093009.
[38] Silva M, Gonçalves A, Vilar V, Pires J. Article experimental and techno-economic study on the use of microalgae for paper industry effluents remediation. Sustainability. 2021;13(3):1–29. doi: 10.3390/su13031314.
[39] Kumar A, Srivastava N, Gera P. Removal of color from pulp and paper mill wastewater- methods and techniques- A review. Journal Environmental Management. 2021;298(August):113527.
[40] Gentili FG. Microalgal biomass and lipid production in mixed municipal, dairy, pulp and paper wastewater together with added flue gases. Bioresource Technology. 2014;169:27–32. doi: 10.1016/j.biortech.2014.06.061.
[41] Sutherland D, Park J, Heubeck S, Ralph P, Craggs R. Size matters – Microalgae production and nutrient removal in wastewater treatment high rate algal ponds of three different sizes. Algal Research. 2020;45( July):101734. doi:10.1016/j.algal.2019.101734.
[42] Subashchandrabose S, Ramakrishnan B, Megharaj M. Consortia of cyanobacteria / microalgae and bacteria: Biotechnological potential. Biotechnology Advances. 2011;29:896–907. doi: 10.1016/j.biotechadv.2011.07.009.
[43] Usha M, Sarat C, Sarada R, Chauhan V. Removal of nutrients and organic pollution load from pulp and paper mill effluent by microalgae in outdoor open pond. Bioresource Technology. 2016;214:856–860. doi:10.1016/j.biortech.2016.04.060.