KnE Life Sciences
ISSN: 2413-0877
The latest conference proceedings on life sciences, medicine and pharmacology.
Premature Ventricular Contraction (PVC) Detection Using R Signals
Published date: Mar 10 2019
Journal Title: KnE Life Sciences
Issue title: The UGM Annual Scientific Conference Life Sciences 2016
Pages: 1–7
Authors:
Abstract:
References:
[1] Desai U, Martis RJ, Nayak CG, Sarika K, Seshikala G. Machine intelligent diagnosis of ECG for arrhythmia classification using DWT, ICA and SVM techniques. In: 12th IEEE International Conference Electronics, Energy, Environment, Communication, Computer, Control: (E3-C3). INDICON 2016.p.2–5. https://ieeexplore.ieee.org/document/ 7443220/
[2] Ouelli A, Elhadadi B, Aissaoui H, Bouikhalene B. Electrocardiogram features extraction and classification for arrhythmia detection, J. Multidiscip. Eng. Sci. Technol., 2015;2(3):3159–3140. www.jmest.org/wp content/uploads/JMESTN42350545.pdf
[3] Patel AN, Abhilasha M. Gakare, Pankaj K, Cheeran. Real time ecg feature extraction and arrhythmia detection on a mobile platform. Int. J. Comput. Appl., 2012; 44(23):40– 45. https://www.ijcaonline.org/archives/volume44/number23/6432-8840
[4] Ye C, Coimbra MT, Vijaya Kumar BK. Arrhythmia detection and classification using morphological and dynamic features of ECG signals. Conf. Proc. IEEE Eng. Med. Biol. Soc., 2010; 2010:1918–1921. https://www.ncbi.nlm.nih.gov/pubmed/21097000
[5] Rawther NN, Cheriyan J. Detection and classification of cardiac arrhythmias based on ecg and pcg using temporal and wavelet features. Int. J. Adv. Res. Comput. Commun. Eng., 2015; 4 (4):474–479. https://www.ijarcce.com/upload/2015/april-15/IJARCCE% 20108.pdf
[6] Mane RS, Cheeran AN, Awandekar VD. Cardiac arrhythmia detection by ecg feature extraction. Int. J. Eng. Res. Appl., 2013;3(2):327–332. www.ijera.com/papers/Vol3_issue2/AX32327332.pdf
[7] Sharmila V. Identification of pvcs based on peak detection with teager energy operator. Int. J. Comput. Appl.,
2014;103(16):38–43. https://www.researchgate.net/publication/ 284379844_Identification_of_PVCs_based_on_Peak_Detection_with_Teager_Energy_Operator
[8] Kamath C. A novel approach to arrhythmia classification using RR interval and teager energi. J. Eng. Sci. Technol., 2012;7(6):744–755. http://jestec.taylors.edu.my/Vol% 207%20Issue%206%20December%2012/Vol_7_6_744_755_CHANDRAKAR% 20KAMATH.pdf
[9] Rezazadeh F, Amin S, Seno H. A new heart arrhythmia’s detection algorithm. J. Knowl. Manag. Econ. Inf. Technol. 2013;3(6):1–22. http://www.scientificpapers.org/ download/299/
[10] Moody GB, Mark RG. The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag., 2001;20(3):45–50. https://ieeexplore.ieee.org/document/932724/ DOI