KnE Life Sciences

ISSN: 2413-0877

The latest conference proceedings on life sciences, medicine and pharmacology.

Lichen-like Symbiotic Associations of Wood-decaying Fungi and Algae. I. Biodiversity and Ecology of Photobionts

Published date: Oct 29 2018

Journal Title: KnE Life Sciences

Issue title: The Fourth International Scientific Conference Ecology and Geography of Plants and Plant Communities

Pages: 134–142

DOI: 10.18502/kls.v4i7.3231

Authors:
Abstract:

The article presents new data on the taxonomical, morphological and ecological composition and species diversity of symbiont algae associated with xylotrophic fungi. The largest part of symbionts (86%) are eukaryotic algae belonging to the divisions Chlorophyta (68% of total number of species), Ochrophyta (9%) and
Charophyta (8%). The prokaryotic algae, or Cyanoprokaryota, make up the remaining 14% of species. The eukaryotic algae are an obligatory component of mycetobiont communities, whereas Cyanoprokaryota are the optional, facultative part. Out of 46 mycetobiont algae genera, 29 (or 64%) are single-species taxa, while 15 (32%) genera include two or three species. Two genera – Chlamydomonas and Klebsormidium – are represented by 6 and 4 species, respectively. The majority of mycetobiont algae have coccoid (41%) and trichal (33%) thalli, colonial-coccoid (18%) and monadic (8%) algae are rarely observed. All algae species belong to widespread epiphytic, soil and lichenophilic groups that do not require symbiosis with fungi. Obligatory mycetobionts were not observed during the study. Communities of mycetobiont algae have host-specificity and high geographical and individual variability.


Keywords: wood-decaying fungi, algae and Cyanoprokaryota, biodiversity, ecology, symbiosis

References:

[1] Burdsall, H. H., Volk, T. J., and J. F. (1996). Ammirati, Bridgeoporus, a new genus to accommodate Oxyporus nobilissimus (Basidiomycota, Polyporaceae). Mycotaxon, vol. 60, pp. 387–395.


[2] Zavada, M. S. and Simoes, P. (2001). The possible demi-lichenization of the basidiocarps of Trametes versicolor (L.: Fries) Pilat (Polyporaceae), Northeast. Nature, vol. 8, no. 1, pp. 101–112.


[3] Zavada, M. S., DiMichele, L., and Toth, C. R. (2004). The possible demi-lichenization of Trametes versicolor (L.: Fr.) Pilat (Polyporaceae): The Transfer of Fixed 14CO2 from Epiphytic Algae to T. versicolor, Northeast. Nature, vol. 11, no. 1, pp. 33–40.


[4] Videv, P. V., Gärtner, G., Uzunov, B. A., et al. (2017). Epimycotic algae on the medicinal fungus Trametes versicolor (L.) Lloyd. International Journal of Advanced Research in Botany (IJARB), vol. 3, no. 2, pp. 18–26.


[5] Stoyneva, M. P., Uzunov, B. A., and Gärtner, G. (2015). Aerophytic green algae, epimycotic on Fomes fomentarius (L. ex Fr.) Kickx. Annual of Sofia University “St. Kliment Ohridski”, Faculty of Biology, Book 2, vol. 99, pp. 19–25.


[6] Neustroeva, N. V. and Mukhin, V. A. (2013). Symbiotic associations of xylotrophic basidiomycetes and algae, in XIII Congress of Russian Botanical Society “Modern Botany in Russia” and Conference on Scientific Bases of Vegetation Protection and Rational Management in the Volga Basin. Tolyatti: Kassandra.


[7] Neustroeva, N. V., Kiseleva, I. S., and Mukhin, V. A. (2015). Carbon exchange between mycetobiont algae and wood-destroying fungi, in All-Russian Conference with International Participation “Biodiversity and Ecology of Fungi and MushroomLike Organisms of Northern Eurasia”. Ekaterinburg: Publishing House of the Ural University.


[8] Mukhin, V. A., Patova, E. N., Kiseleva, I. S., et al. (2016). Mycetobiont symbiotic algae of wood-decomposing fungi. Russian Journal of Ecology, vol. 47, no. 2, pp. 133–137.


[9] Mukhin, V. A., Patova, E. N., Sivkov M. D., et al. (2018). Diversity and NitrogenFixing Activity of Phototrophic Mycetobionts of Xylotrophic Fungi. Russian Journal of Ecology, vol. 49, no. 5, pp.406–412.


[10] Komárek, J. and Fott, B. (1983). Chlorophyceae (Grünalgen). Ordnung: Chlorococcales, Das Phytoplankton des Süsswassers: Systematik und Biologie, 7, part 1. Stuttgart: Das Phytoplankton des Süsswassers.


[11] Ettl, H. and Gärtner, G. (2014). Syllabus der Boden-, Luft- und Flechtenalgen. Berlin & Heidelberg: Springer Spektrum.


[12] Andreeva, V. M. (1998). Soil and Aerophilic Green Algae (Chlorophyta: Tetrasporales, Chlorococcales, Chlorosarcinales). St. Petersburg: Nauka.


[13] Neustroeva, N. V., Mukhin, V. A., Novakovskaya, I. V., et al. (2017). Host variability of mycetobiont algae. Vestn. Udm. Univ., ser. “Biology. Earth Science”, vol. 27, no. 3, pp. 291–296.


[14] Neustroeva, N. V. and Mukhin, V. A. (2017). Symbiotic associations of xylotrophic fungi: Taxonomical and biomorphological composition mycetobiont algae, in The Fourth Congress of Russian Mycologists: Current Mycology in Russia. Moscow: Nat. Acad. Mycol.

Download
HTML
Cite
Share
statistics

577 Abstract Views

157 PDF Downloads