KnE Life Sciences
ISSN: 2413-0877
The latest conference proceedings on life sciences, medicine and pharmacology.
Micellization Behavior of Ionic Surfactants in Presence of Butanol Isomers in Non-aqueous Solutions
Published date: Oct 15 2018
Journal Title: KnE Life Sciences
Issue title: Sustainability and Resilience Conference: Mitigating Risks and Emergency Planning – Life Sciences Track
Pages: 1–13
Authors:
Abstract:
Electrical conductivity and surface tension measurements of various surfactants, such as sodium caprylate, sodium laurate, sodium palmitate and sodium stearate micellar solution, containing 1-butanol (1-BuOH), 2-butanol (2-BuOH) and tertiary butanol (t-BuOH) in n,n-dimethyl acetamide have been determined at various temperatures. Both methods show that micelles are formed in n,n-dimethyl acetamide (DMA) solution in the presence of butanol isomers. Critical micelle concentration (cmc) has been determined for each of the surfactants. Critical micelle concentrations have also been measured as a function of temperatures and concentration of butanol isomers added. It is suggested that the addition of alcohol leads to an increase in n,n-dimethyl acetamide penetration into the micellar interface that depends on the alkyl chain configuration for three isomeric alcohols. Thermodynamic parameters of micellization, enthalpy (ÄH0m, entropy (ÄS0m), and free energy (ÄG0m) were determined from the temperature dependence of CMC. The solvent composition dependence of these thermodynamic parameters is determined in terms of the effect of additives on the micellization of ionic surfactants. It is observed that both ÄH0m and ÄS0m bear out not only the observed order of decrease in cmc but also account reasonably the effects produced by differences in alkyl chain configuration for these isomeric alcohols. In all cases ÄG0m < 0, and remained practically constant over the entire solvent composition range studied. It is suggested that due to different structural consequences of intermolecular interactions, both enthalpy and entropy must differ in a mutually compensating manner so that G0m is not significantly affected.
References:
[1] W. U. Malik, S.P. Verm, P. Chand, Indian J. Chem., 8 (1970) 826.
[2] N. Nishikido, Y. Moroi, H. Vehara, R. Matuura, Bull. Chem. Soc. Japan, 47 (1974) 2634.
[3] K. Hayare, S. Hayano, Bull. Chem. Soc. Japan, 50 (1977) 83.
[4] H. N. Singh, S. Swarup, R.P. Singh, S. M. Saleem, Indian J. Chem., 20 (1981) 292.
[5] P. Baglioni, L. Kevan, J. Phys. Chem., 91 (1987) 1516.
[6] H. N. Singh, S. Swarup, S. M. Saleem, J. Colloid Interface Sci., 68 (1979) 128.
[7] P. G. Degennes, C. Taupin, J. Phys. Chem. 86 (1982) 2294.
[8] B. Lindman, H. Wennerstorm. In Topics in Current Chemistry, Springer-Verlag, Heidelberg, 1980, Vol. 87 Pg 1-83.
[9] H. Hoiland, E. Losland,S. Backlund, J. Colloid Interface Sci.,101 (1984) 467.
[10] C. Bravo, J. R. Leis,M. E. Pena, J. Phys. Chem.,96 (1992) 1957.
[11] G. M. Forland, J. Sameth, H, Hoiland, K. Mortensen, J. Colloid, Interface Sci., 164 (1994) 163.
[12] M. Trotta, M. R. Gasco, F. Pattarino, J. Colloid Interface Sci., 158 (1993) 133.
[13] A. M. Blokhus, H. Hoiland, S. Backlund, J. Colloid Interface Sci.,144 (1986) 9.
[14] P. Lianos, R. Zana, J. Colloid Interface Sci., 101 (1984) 587.
[15] A. B. Mandal, L. Wang, K. Brown, R. G. Verrall, J. Colloid Interface Sci., 161 (1993) 292.
[16] R. Zana, S. Yiv, C. Strazielle, P. Lianos, J. Colloid Interface Sci.,80 (1981) 208.
[17] P. Lianos, J. Lang, C. Strazielle, R. Zana, J. Phys. Chem.,86 (1982) 1019.
[18] M. Almgreen, J. E. Lofroth, J. Colloid Interface Sci., 81 (1981) 486.
[19] M. Almgreen, S. Swarup, J. Colloid Interface Sci., 91 (1983) 256.
[20] J. N. Israelchvilli, D. Mitchell and B. W. Ninham, J. Chem. Soc. Faraday Trans. 272 (1976) 1525.
[21] D. Mitchel, B. W. Ninham, J. Chem. Soc. Faraday Trans. 277 (1981) 601.
[22] M. Almgreen, S. Swarup, J. Colloid Interface Sci., 91 (1983) 1983.
[23] M. Almgreen and S. Swarup, J. Phys. Chem., 86 (1982) 4212.
[24] P. Mukurjee and J. Cardinal, J. Phys. Chem., 82 (1978) 1620.
[25] M. Salim Akhter, Sadeq M. Alawi, Colloids and Surfaces, 164 (2000) 247.
[26] M. Salim Akhter, Sadeq M. Alawi, Colloids and Surfaces, 175 (2000) 311.
[27] M. Salim Akhter, Sadeq M. Alawi, Colloids and Surfaces, 196 (2002) 163.
[28] M. Salim Akhter, Sadeq M. Alawi, Colloids and Surfaces, 219 (2003) 281.
[29] Sadeq M. Alawi, M. Salim Akhter, Colloid Journal, 72 (2010) 295.
[30] Sadeq M. Alawi, M. Salim Akhter, J. Korean Chem. Soc., 55 (2011) 163.
[31] Sadeq M. Alawi, M. Salim Akhter, J. Mol. Liq., 160 (2011) 63.
[32] P. Mukerjee, K. J. Mysels, Critical micelle concentration of aqueous surfactant systems. NSRDS-NBS 36. Washington, D.C. U.S. Government Printing Office, 1971.
[33] H. Garibi, R. Palepu, G.J.T. Tiddy, D.G. Hall, E. Wyne-Jones, Chem. Soc., Chem. Commun., 2 (1990) 115.
[34] P. Bacher, In Nonionic Surfactants, p.478, M. J Schick, (Ed), Dekker New York (1976).
[35] R.D. Geer, E.H. Eylar, Anacker, E.W., J. phys. Chem., 75, (1971) 369.
[36] P. Molyneux, C.T Rhodes, J. Swarbrick, Soc., Faraday Trans. 61, (1965) 1043.
[37] E. Vikingstad, A. Skauge, H. Hoiland, J. Colloid Interface Sci., 66, (1978) 240.
[38] A.W. Ralston, D.W. Eddenburger, J. Am. Chem. Soc., 70 (1948) 983.
[39] P.D.I. Fletcher, P.J. Gilbert, J. Chem. Soc., Faraday Trans. 85 (1989) 148.
[40] S. Miyagishi, Bull. Chem. Soc. Jpn. 47(1947) 2972; 48 (1975) 2349.
[41] K.T. Parekh, G.M. Malik, P.H. Kothwala P. Bahadur, Fat. Sci. Technol. 10 (1988) 395.