KnE Life Sciences

ISSN: 2413-0877

The latest conference proceedings on life sciences, medicine and pharmacology.

Potential of Solar Energy Mapping in East Priangan Using Satellite Imagery and Environmental Based on GIS

Published date: Mar 27 2024

Journal Title: KnE Life Sciences

Issue title: International Conference On Mathematics And Science Education (ICMScE 2022): Life Sciences

Pages: 284–291

DOI: 10.18502/kls.v8i1.15592

Authors:

Riki Purnama Putrapurnamariki20@gmail.comProgram Studi Pendidikan Fisika, Fakultas Tarbiyah dan Keguruan, UIN Sunan Gunung Djati Bandung. Panyileukan, Jl. Cimencrang, Kec. Gedebage, Kota Bandung, Jawa Barat. 40292, Indonesia

Seni SusantiProgram Studi Pendidikan Fisika, Fakultas Tarbiyah dan Keguruan, UIN Sunan Gunung Djati Bandung. Panyileukan, Jl. Cimencrang, Kec. Gedebage, Kota Bandung, Jawa Barat. 40292, Indonesia

Indy RamadhantiProgram Studi Pendidikan Fisika, Fakultas Tarbiyah dan Keguruan, UIN Sunan Gunung Djati Bandung. Panyileukan, Jl. Cimencrang, Kec. Gedebage, Kota Bandung, Jawa Barat. 40292, Indonesia

Rena Denya AgustinaProgram Studi Pendidikan Fisika, Fakultas Tarbiyah dan Keguruan, UIN Sunan Gunung Djati Bandung. Panyileukan, Jl. Cimencrang, Kec. Gedebage, Kota Bandung, Jawa Barat. 40292, Indonesia

Abstract:

Renewable energy is an energy that can be used to turn on all the energy that is still widely used in the world, including in Indonesia. Solar energy is a renewable energy that uses solar energy as the main ingredient in the formation of electrical energy. Solar energy is one of the most likely energies in a country that is on the equator like Indonesia. One of the interesting problems is how to determine the most effective area for the installation of solar power plants to make the power received by the power plant more effective. This study aims to analyze the effective area for installing solar panels using a Geographic Information System (GIS) as well as mapping of Centralized Solar Power (CSP) and centralized solar photovoltaic (SPV) in the East Priangan area, West Java. The method used in this study is based on the use of remote sensing of the average annual horizontal irradiation (GHI) and Normal Direct Irradiation (DNI). Solar irradiation data (GHI and DNI) were obtained from data from the surface meteorological program and solar energy by NASA, while Land Use/Land Cover, and Digital Elevation Models were used with the use of GIS. The results show that high areas in East Priangan get more effective CSP and SPV results than low areas, but low areas show an average effectiveness value in denuded areas.

Keywords: solar energy, east Priangan, satellite imagery, environmental, GIS

References:

[1] Sen S, Ganguly S. Opportunities, barriers and issues with renewable energy development–A discussion. Renew Sustain Energy Rev. 2017;69:1170–81.

[2] Ahmadi MH, Ghazvini M, Sadeghzadeh M, Alhuyi Nazari M, Kumar R, Naeimi A, et al. Solar power technology for electricity generation: A critical review. Energy Sci Eng. 2018;6(5):340–61.

[3] Guerra OJ, Zhang J, Eichman J, Denholm P, Kurtz J, Hodge BM. The value of seasonal energy storage technologies for the integration of wind and solar power. Energy Environ Sci. 2020;13(7):1909–22.

[4] Al-Kayiem HH, Mohammad ST. Potential of renewable energy resources with an emphasis on solar power in Iraq: an outlook. Resources. 2019;8(1):42.

[5] Zang H, Liu L, Sun L, Cheng L, Wei Z, Sun G. Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal correlations. Renew Energy. 2020;160:26–41.

[6] C. Manoel dos Santos, J.F. Escobedo, A. de Souza, R. Ihaddadene, E.N. Gomes, and M.B.P. da Silva, “Comparative Study of 16 Clear-Sky radiative transfer models to estimate Direct Normal Irradiance (DNI) in Botucatu, Brazil.,” Journal of Solar Energy Engineering. vol. 143, no. 3, p. 2021. https://doi.org/10.1115/1.4048300.

[7] Shanks K, Ferrer-Rodriguez JP, Fernández EF, Almonacid F, Pérez-Higueras P, Senthilarasu S, et al. A> 3000 suns high concentrator photovoltaic design based on multiple Fresnel lens primaries focusing to one central solar cell. Sol Energy. 2018;169:457–67.

[8] Burger SP, Jenkins JD, Huntington SC, Perez-Arriaga IJ. Why distributed?: A critical review of the tradeoffs between centralized and decentralized resources. IEEE Power Energy Mag. 2019;17(2):16–24.

[9] Qiu L, He L, Lu H, Liang D. Systematic potential analysis on renewable energy centralized co-development at high altitude: A case study in Qinghai-Tibet plateau. Energy Convers Manage. 2022;267:115879. [10] Hayat MB, Ali D, Monyake KC, Alagha L, Ahmed N. Solar energy—A look into power generation, challenges, and a solar￿powered future. Int J Energy Res. 2019;43(3):1049–67.

[11] Ruiz HS, Sunarso A, Ibrahim-Bathis K, Murti SA, Budiarto I. GIS-AHP Multi Criteria Decision Analysis for the optimal location of solar energy plants at Indonesia. Energy Rep. 2020;6:3249–63.

[12] A.P. Harsarapama, D.R. Aryani, and D. Rachmansyah, “Open-Source Satellite-Derived Solar Resource Databases Comparison and Validation for Indonesia.,” Journal of Renewable Energy. vol. 2020, p. 2020. https://doi.org/10.1155/2020/2134271.

[13] Aprilianti KP, Baghta NA, Aryani DR, Jufri FH, Utomo AR. “Potential assessment of solar power plant: A case study of a small island in Eastern Indonesia.,” In: IOP Conference Series: Earth and Environmental Science. pp. 12026. IOP Publishing (2020).

[14] Louche A, Notton G, Poggi P, Simonnot G. Correlations for direct normal and global horizontal irradiation on a French Mediterranean site. Sol Energy. 1991;46(4):261–6.

[15] Aly A, Jensen SS, Pedersen AB. Solar power potential of Tanzania: identifying CSP and PV hot spots through a GIS multicriteria decision making analysis. Renew Energy. 2017;113:159–75.

[16] Shorabeh SN, Firozjaei MK, Nematollahi O, Firozjaei HK, Jelokhani-Niaraki M. A riskbased multi-criteria spatial decision analysis for solar power plant site selection in different climates: A case study in Iran. Renew Energy. 2019;143:958–73.

[17] Colak HE, Memisoglu T, Gercek Y. Optimal site selection for solar photovoltaic (PV) power plants using GIS and AHP: A case study of Malatya Province, Turkey. Renew Energy. 2020;149:565–76.

[18] Martín AM, Domínguez J, Amador J. Applying LIDAR datasets and GIS based model to evaluate solar potential over roofs: a review. AIMS Energy. 2015;3(3):326–43.

[19] Victoria M, Haegel N, Peters IM, Sinton R, Jäger-Waldau A, del Cañizo C, et al. Solar photovoltaics is ready to power a sustainable future. Joule. 2021;5(5):1041–56.

[20] Shubbak MH. Advances in solar photovoltaics: technology review and patent trends. Renew Sustain Energy Rev. 2019;115:109383.

[21] M.M. Hoogwijk, “On the global and regional potential of renewable energy sources,” (2004).

[22] Dubey S, Sarvaiya JN, Seshadri B. Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world–a review. Energy Procedia. 2013;33:311–21.

[23] Trieb F. “Global potential of concentrating solar power.,” In: Conference Proceedings (2009).

[24] Yu D, Ebadi AG, Jermsittiparsert K, Jabarullah NH, Vasiljeva MV, Nojavan S. Riskconstrained stochastic optimization of a concentrating solar power plant. IEEE Trans Sustain Energy. 2019;11(3):1464–72.

[25] Mohammadi K, Saghafifar M, Ellingwood K, Powell K. Hybrid Concentrated Solar Power (CSP)-desalination systems: A review. Desalination. 2019;468:114083.

Download
HTML
Cite
Share
statistics

201 Abstract Views

143 PDF Downloads