KnE Life Sciences
ISSN: 2413-0877
The latest conference proceedings on life sciences, medicine and pharmacology.
Modification of Pickle Goatskin with Silver Nanoparticles Using Brown Algae (Padina sp.) With Assisted Microwave
Published date: Mar 27 2024
Journal Title: KnE Life Sciences
Issue title: International Conference On Mathematics And Science Education (ICMScE 2022): Life Sciences
Pages: 51–65
Authors:
Abstract:
The objectives of this study were to determine the effects of modification of goat skin with silver nanoparticles prepared using brown algae (Padina sp.) and assisted microwave on hydrophobic properties, antimicrobial activity, mechanical properties, and biodegradability of goat skin. The synthesis of silver nanoparticles was carried out using the microwave method with a bioreductor of brown algae extract (Padina sp.) and a stabilizer of a starch solution. Characterization of the resulting silver nanoparticles was conducted by determining the wavelength utilizing the UV-Vis instrument and the particle size with a particle size analyzer (PSA). Characterization of the modified goat skin was conducted by measuring hydrophobicity through the sessile drop method, the antimicrobial activity test on modified goat skin was done by determining the clear zone against Escherichia coli (gram-negative bacteria) and Staphylococcus epidermidis (gram-positive bacteria). The mechanical properties of modified goat skin were analyzed by measuring the tensile strength of the skin. The characterization with UV-Vis on the resulting silver nanoparticles revealed 426 nm in maximum absorption and the diameter of silver nanoparticles by using PSA was 58.2 nm. Based on atomic absorption spectroscopy (AAS), the study showed that as many as 99.25% of silver nanoparticle has coated the surface of pickle goat skin. The modification of goatskin by adding silver nanoparticle can increase antibacterial activity of goatskin. The contact angle and the tensile strength of goatskin after modification were 81.49o and 14.63 MPa. The clear zone of goatskin after modification against Staphylococcus epidermidis and Escherichia coli were 9.33 mm and 8.87 mm, respectively. Meanwhile, the best biodegradability was the unmodified goatskin. Thus, modification by nanoparticles can decrease the biodegradability of goatskin.
Keywords: pickle goatskin, silver nanoparticles, brown algae
References:
[1] S. Lamma, “Analisis kadar tanin total dari alga coklat (Sargassum sp. dan Padina sp.) sebagai obat antiperdarahan (pilot study),” (2017).
[2] V.A. Fabiani, F. Sutanti, D. Silvia, and M.A. Putri, “Green synthesis nanopartikel perak menggunakan ekstrak daun pucuk idat (Cratoxylum glaucum) sebagai bioreduktor.,” Indonesian Journal of Pure and Applied Chemistry. p. 2018. https://doi.org/10.26418/indonesian.v1i2.30533.
[3] Abdullah M. Y. Virgus, Nirmin, and Khairurrijal, “Review: sintesis nanomaterial.,”. Jurnal Nanosains & Nanoteknologi. 2008;1(2):33–57.
[4] Haryono A, Sondari D, Harnami SB, Randy MF. Sistesa nanopartikel perak dan potensi aplikasinya. Jurnal Riset Industri. 2008;2(3):156–63.
[5] Zheng K, Setyawati MI, Leong DT, Xie J. Antimicrobial silver nanomaterials. Coord Chem Rev. 2018;357:1–17.
[6] Fatimah I, Indriani N. Silver nanoparticles synthesized using Lantana Camara flower extract by reflux, microwave and ultrasound methods. Chemistry Journal of Moldova. 2018;13(1):95–102.
[7] R. Bahanan, “Pengaruh waktu sonokimia terhadap ukuran kristal kalsium karbonat (CaCO3),” (2010).
[8] Ganapathy Selvam G, Sivakumar K. Phycosynthesis of silver nanoparticles and photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Hypnea musciformis (Wulfen) J.V. Lamouroux. Appl Nanosci. 2015;5(5):617–22.
[9] Ahmed S, Ahmad M, Swami BL, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J Adv Res. 2016 Jan;7(1):17–28.
[10] Anastas P, Eghbali N. Green chemistry: principles and practice. Chem Soc Rev. 2010 Jan;39(1):301–12.
[11] Rahman A, Deliana Z, Ali D, Nawawi A. Uji coba teknologi. Balai Penelitian dan Pengembangan Industri, Banda Aceh, 2000.
[12] Chulifah U. Biodegradasi plastik nata de leri menggunakan lumpur aktif. Yogyakarta; 2010.
[13] Fardiaz S. Mikrobiologi pangan. Jakarta: PT Gramedia Pustaka Utama; 1992.
[14] Crawford JA, Kaper JB. “The N?terminus of enteropathogenic Escherichia coli (EPEC) tir mediates transport across bacterial and eukaryotic cell membranes.,” Molecular Microbiology. vol. 46, p. 2002. https://doi.org/10.1046/j.1365-2958.2002.03214.x.
[15] Darojah P. OedijaniSantoso, and V. Rizke Ciptaningtyas, “Pengaruh asap cair berbagai konsentrasi terhadap viabilitas Staphylococcus aureus.,”. Jurnal Kedokteran Diponegoro. 2019;8(1):390–400.
[16] Liu J, Sonshine DA, Shervani S, Hurt RH. Controlled release of biologically active silver from nanosilver surfaces. ACS Nano. 2010 Nov;4(11):6903–13.
[17] Matin A, Merah N, Ibrahim AS. Superhydrophobic and self-cleaning surfaces prepared from a commercial silane using a single-step drop-coating method. Prog Org Coat. 2016;99:322–9.
[18] Darmawan A, Utari R, Saputra RE. Suhartana, and Y. Astuti, “Synthesis and characterization of hydrophobic silica thin layer derived from methyltrimethoxysilane (MTMS).,” IOP Conference Series: Materials Science and Engineering. vol. 299, p. 2018.
[19] Committee A. Standard test method for hydrophobic contamination on glass by contact angle measurement. United States; 2004.
[20] American Society for Testing and Method, “Standart test method for tensile propertis of plastics. Philadelphia, PA.,”
[21] Kholifah N, Darmanto YS, Wijayanti I. “Perbedaan konsentrasi mimosa pada proses penyamakan terhadap kualitas fisik dan kimia ikan nika (Oreochromis niloticus).,” Jurnal Pengolahan dan Bioteknologi Hasil Perikanan; Volume 3, Nomor 4, Tahun 2014. p. 2014.
[22] Kusnadi P. S. Ammi, P. Widi, and R. Diana, Mikrobiologi. Bandung: Universitas Pendidikan Indonesia; 2003.
[23] M.O. S. R. Masaoka, R. Kawamura, and N. Sakota, Degradable polymers, recycling and plastics waste management., New York, 1995.
[24] Rohaeti E, Kasmudjiastuti E, Murti RS, Irwanto D. Enhancement of antibacterial activity of suede leather through coating silver nanoparticles synthesized using piper betle. Rasayan J Chem. 2020;13(1):628–35.
[25] Sulfikar YM, Rasyid M. Biosintesis partikel-nano perak menggunakan ekstrak metanol daun manggis (Garcinia mangostana L.). Jurnal Sainsmat. 2015;IV(1):28– 41.
[26] Rawle A. Basic principles of particle-size analysis. Surf Coat Int A Coat J. 2003;86(2):58–65.
[27] Haryono A, Harmami B. Sri, “Aplikasi nanopartikel perak pada serat katun sebagai produk jadi tekstil antimikroba.,”. Jurnal Kimia Indonesia. 2010;5(1):1–6.
[28] Wahyudi T, Sugiyana D, Helmy Q. “Sintesis nanopartikel perak dan uji aktivitasnya terhadap bakteri E. coli dan S. aureus.,” Arena Tekstil. vol. 26, no. 1, p. 2011. https://doi.org/10.31266/at.v26i1.1442.
[29] M. Wheelis, Principle of microbiology. Jones & Bartlett Publisher, New Jersey.