KnE Life Sciences

ISSN: 2413-0877

The latest conference proceedings on life sciences, medicine and pharmacology.

The Inhibition of Angiotensin-Converting Enzyme 2 Receptors of SARS-CoV-2 Through Mucroporin Derived from Scorpion Venom

Published date: Dec 27 2022

Journal Title: KnE Life Sciences

Issue title: Science and Technology Research Symposium (SIRES)

Pages: 92–102

DOI: 10.18502/kls.v7i5.12514

Authors:

Taufik Muhammad FakihEmail: taufikmuhammadf@gmail.com
Affiliation: Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Islam Bandung, Bandung, Indonesia
Biography:

Mentari Luthfika DewiEmail: N/A
Affiliation: Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Islam Bandung, Bandung, Indonesia
Biography:

Eky SyahroniEmail: N/A
Affiliation: Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Islam Bandung, Bandung, Indonesia
Biography:

Taufik Muhammad Fakih - taufikmuhammadf@gmail.com - https://orcid.org/0000-0001-7155-4412

Mentari Luthfika Dewi - https://orcid.org/0000-0002-9192-3163

Eky Syahroni - https://orcid.org/0000-0003-1126-4418

Abstract:

The SARS-CoV-2 virus that causes COVID-19 has a spike glycoprotein that can bind to a host cell receptor, angiotensin-converting enzyme 2 (ACE-2). This plays an important role in the entry of viral cells. Therefore, targeting of the ACE- 2 receptor holds promise as a potential target for anti-viral interventions to prevent and inhibit COVID-19. This study aims to focus on in silico studies to screen alternative drugs that can block ACE-2 receptor properties as a receptor for SARS- CoV-2. It is a potential therapeutic target for COVID-19 using the bioactive peptide Mucroporin which is derived from scorpion venom. There were four sequences of Mucroporin peptides modeled using the PEP-FOLD 3.5 server. The protein- peptide-based molecular docking simulations were used to identify and evaluate the actions of Mucroporin against ACE-2 receptors using PatchDock. The best response is then further observed using BIOVIA Discovery Studio 2020. This study revealed that Mucroporin and Mucroporin-S1 gave the best docking scores compared to Mucroporin-M1 and Mucroporin-S2, with the binding free energy values of −943.53 kJ/mol, −162.42 kJ/mol, 867.80 kJ/mol and 43.14 kJ/mol respectively. This study reveals for the first time that Mucroporin and Mucroporin-S1 are functional inhibitors of ACE-2 and as such, that components of scorpion venom can be used as potential inhibitors to the ACE-2 receptor of SARS-CoV-2.

Keywords: SARS-CoV-2; COVID-19; Angiotensin-Converting Enzyme 2 (ACE-2); Mucroporin; In Silico Study

References:

[1] M. Hoffmann, H. Kleine-Weber, S. Schroeder, N. Krüger, T. Herrler, S. Erichsen, T. S. Schiergens, G. Herrler,

[2] N. H. Wu, A. Nitsche, and M. A. Müller, cell 181(2), 271-280 (2020).

[3] A. L. Z. Djomkam, C. O. Olwal, T. B. Sala, L. Paemka, Frontiers in Oncology 10, 1448 (2020).

[4] H. Chen, Q. Du, Potential natural compounds for preventing SARS-CoV-2 (2019- nCoV) infection Preprints (2020).

[5] R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu, W. Wang, H. Song, B. Huang, N. Zhu, and Y. Bi, Lancet

[6] 395(10224), 565-574 (2020).

[7] W. Li, M. J. Moore, N. Vasllieva, J. Sui, S. K. Wong, M. A. Berne, M. Somasundaran, J. L. Sullivan, K. Luzuriaga, T. C. Greenough, and H. Choe, Nature 426, 450-454 (2003).

[8] K. Kuba, Y. Imai, S. Rao, H. Gao, F. Guo, B. Guan, Y. Huan, P. Yang, Y. Zhang, W. Deng, and L. Bao, Nature medicine 11(8) 875-879 (2005).

[9] C. G. K. Ziegler, S. J. Allon, S. K. Nyquist, I. M. Mbano, V. N. Miao, C. N. Tzouanas, Y. Cao, A. S. Yousif, J. Bals, B. M. Hauser, and J. Feldman, Cell 181(5), 1016-1035 (2020).

[10] N. A. Lieberman, V. Peddu, H. Xie, L. Shrestha, M. L. Huang, M. C. Mears, M. N. Cajimat, D. A. Bente, P. Y. Shi, F. Bovier, and P. Roychoudhury, PLoS Biol. 18(9), (2020).

[11] M. Letko, A. Marzi and V. Munster, Nature microbiology 5(4), 562-569 (2020)

[12] K. A. Pastick, E. C. Okafor, F. Wang, S. M. Lofgren, C. P. Skipper, M. R. Nicol, M. F. Pullen, R. Rajasingham,

[13] E. G. McDonald, T. C. Lee, I. S. Schwartz, L. E. Kelly, S. A. Lother, O. Mitjà, E. Letang, M. Abassi and D. R. Boulware, Open Forum Infect. Dis. 7(4), 1-9 (2020).

[14] J. M. Sanders, M. L. Monogue, T. Z. Jodlowski and J. B. Cutrell, JAMA - J. Am. Med. Assoc. 323(18), 1824- 1836 (2020).

[15] L. Ang, H. W. Lee, J. Y. Choi, J. Zhang and M. Soo Lee, Integr. Med. Res. 9(2), 100407 (2020).

[16] S. Panyod, C. T. Ho and L. Y. Sheen, Journal of traditional and complementary medicine10(4), 420-7 (2020).

[17] T. M. Fakih and M. L. Dewi, Jurnal Sains Farmasi & Klinis 7(1), 76-82 (2020).

[18] B. N. Hmed, H. T. Serria, Z. K. Mounir, Journal of toxicology (2013).

[19] M. Baradaran, A. Jalali, M. N. Soorki, M. Jokar and H. Galehdari, Iran. J. Pharm. Res. 18(2) 720 (2019).

[20] M. Bakail and F. Ochsenbein, Comptes Rendus Chim. (2016).

[21] H. K. Kang, C. Kim, C. H. Seo and Y. Park, Microbiol. 55(1), 1-12 (2017).

[22] E. Lenci and A. Trabocchi, Chem. Soc. Rev. 49(11), 3262-3277 (2020). 20. H. B. Koo and J. Seo, Pept. Sci. 111(5), e24122 (2019).

[23] É. C. G. da Mata, C. B. F. Mourão, M. Rangel and E. F. Schwartz, J. Venom. Anim. Toxins Incl. Trop. Dis. 23,(2017).

[24] C. Dai, Y. Ma, Z. Zhao, R. Zhao, Q. Wang, Y. Wu, Z. Cao and W. Li, Antimicrob. Agents Chemother. 52(11), 3967-3972 (2008).

[25] Q. Li, Z. Zhao, D. Zhou, Y. Chen, W. Hong, L. Cao, J. Yang, Y. Zhang, W. Shi, Z. Cao, Y. Wu, H. Yan and W. Li, Peptides 32(7), 1518-1525 (2011).

[26] Z. Zhao, W. Hong, Z. Zeng, Y. Wu, K. Hu, X. Tian, W. Li and Z. Cao, J. Biol. Chem. 287(36), 30181-30190 (2012).

[27] Y. Chen, L. Cao, M. Zhong, Y. Zhang, C. Han, Q. Li, J. Yang, D. Zhou, W. Shi, B. He, F. Liu, J. Yu, Y. Sun, Y. Cao, Y. Li, W. Li, D. Guo, Z. Cao and H. Yan, PLoS One 7(4), p.e34947 (2012).

[28] S. Kumar, V. K. Maurya, A. K. Prasad, M. L. B. Bhatt and S. K. Saxena, VirusDisease 31(1), 13-21 (2020).

[29] J. Shang, G. Ye, K. Shi, Y. Wan, C. Luo, H. Aihara, Q. Geng, A. Auerbach and F. Li, Nature 581(7807), 221- 224 (2020).

[30] L. C. P. V. Boas, M. L. Campos, R. L. A. Berlanda, N. d. C. Neves and O. L. Franco, Cell. Mol. Life Sci. 76(18) 3525-3542 (2019).

[31] S. Mustafa, H. Balkhy and M. Gabere, Advances in bioinformatics (2019).

[32] S. M. D. Rizvi, S. Shakil and M. Haneef, EXCLI J. 12, 831 (2013).

[33] M. Yousef, T. Abdelkader and K. El-Bahnasy, Ain Shams Eng. J. 10(4), 713-719 (2019).

[34] A. W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green, C. Qin, A. Žídek, A. W. R. Nelson, A. Bridgland, H. Penedones, S. Petersen, K. Simonyan, S. Crossan, P. Kohli, D. T. Jones, D. Silver, K. Kavukcuoglu and D. Hassabis, Nature 577(7792), 706-710 (2020).

[35] T. M. Fakih and M. L. Dewi, J. Farm. Galen. (Galenika J. Pharmacy), 6(2), (2020).

[36] B. Senthilkumar, D. Meshachpaul and R. Rajasekaran, Biochemistry research international, (2016).

[37] S. Das, R. K. Sahoo, P. B. Sahoo, K. V. D. Prakash and D. Bhattacharyay, European Journal of Medicinal Plants 20, 29-33 (2020).

[38] J. Maupetit, P. Derreumaux and P. Tuffery, Nucleic Acids Res. 37(suppl_2), W498- W503 (2009).

[39] Y. Shen, J. Maupetit, P. Derreumaux and P. Tufféry, J. Chem. Theory Comput. 10(10), 4745-4758 (2014).

[40] P. Thévenet, Y. Shen, J. Maupetit, F. Guyon, P. Derreumaux and P. Tufféry, Nucleic Acids Res. 40(W1), W288- W293 (2012).

[41] Y. Han and P. Král, ACS Nano 14, 5143–7 (2020).

[42] G. Zhang, S. Pomplun, A. R. Loftis, A. Loas and B. L. Pentelute, bioRxiv (2020).

Download
HTML
Cite
Share
statistics

246 Abstract Views

189 PDF Downloads