KnE Life Sciences

ISSN: 2413-0877

The latest conference proceedings on life sciences, medicine and pharmacology.

The Inhibition of Angiotensin-Converting Enzyme 2 Receptors of SARS-CoV-2 Through Mucroporin Derived from Scorpion Venom

Published date: Dec 27 2022

Journal Title: KnE Life Sciences

Issue title: Science and Technology Research Symposium (SIRES)

Pages: 92–102

DOI: 10.18502/kls.v7i5.12514

Authors:

Taufik Muhammad Fakihtaufikmuhammadf@gmail.comDepartment of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Islam Bandung, Bandung, Indonesia

Mentari Luthfika DewiDepartment of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Islam Bandung, Bandung, Indonesia

Eky SyahroniDepartment of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Islam Bandung, Bandung, Indonesia

Abstract:

The SARS-CoV-2 virus that causes COVID-19 has a spike glycoprotein that can bind to a host cell receptor, angiotensin-converting enzyme 2 (ACE-2). This plays an important role in the entry of viral cells. Therefore, targeting of the ACE- 2 receptor holds promise as a potential target for anti-viral interventions to prevent and inhibit COVID-19. This study aims to focus on in silico studies to screen alternative drugs that can block ACE-2 receptor properties as a receptor for SARS- CoV-2. It is a potential therapeutic target for COVID-19 using the bioactive peptide Mucroporin which is derived from scorpion venom. There were four sequences of Mucroporin peptides modeled using the PEP-FOLD 3.5 server. The protein- peptide-based molecular docking simulations were used to identify and evaluate the actions of Mucroporin against ACE-2 receptors using PatchDock. The best response is then further observed using BIOVIA Discovery Studio 2020. This study revealed that Mucroporin and Mucroporin-S1 gave the best docking scores compared to Mucroporin-M1 and Mucroporin-S2, with the binding free energy values of −943.53 kJ/mol, −162.42 kJ/mol, 867.80 kJ/mol and 43.14 kJ/mol respectively. This study reveals for the first time that Mucroporin and Mucroporin-S1 are functional inhibitors of ACE-2 and as such, that components of scorpion venom can be used as potential inhibitors to the ACE-2 receptor of SARS-CoV-2.

Keywords: SARS-CoV-2; COVID-19; Angiotensin-Converting Enzyme 2 (ACE-2); Mucroporin; In Silico Study

References:

[1] M. Hoffmann, H. Kleine-Weber, S. Schroeder, N. Krüger, T. Herrler, S. Erichsen, T. S. Schiergens, G. Herrler,

[2] N. H. Wu, A. Nitsche, and M. A. Müller, cell 181(2), 271-280 (2020).

[3] A. L. Z. Djomkam, C. O. Olwal, T. B. Sala, L. Paemka, Frontiers in Oncology 10, 1448 (2020).

[4] H. Chen, Q. Du, Potential natural compounds for preventing SARS-CoV-2 (2019- nCoV) infection Preprints (2020).

[5] R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu, W. Wang, H. Song, B. Huang, N. Zhu, and Y. Bi, Lancet

[6] 395(10224), 565-574 (2020).

[7] W. Li, M. J. Moore, N. Vasllieva, J. Sui, S. K. Wong, M. A. Berne, M. Somasundaran, J. L. Sullivan, K. Luzuriaga, T. C. Greenough, and H. Choe, Nature 426, 450-454 (2003).

[8] K. Kuba, Y. Imai, S. Rao, H. Gao, F. Guo, B. Guan, Y. Huan, P. Yang, Y. Zhang, W. Deng, and L. Bao, Nature medicine 11(8) 875-879 (2005).

[9] C. G. K. Ziegler, S. J. Allon, S. K. Nyquist, I. M. Mbano, V. N. Miao, C. N. Tzouanas, Y. Cao, A. S. Yousif, J. Bals, B. M. Hauser, and J. Feldman, Cell 181(5), 1016-1035 (2020).

[10] N. A. Lieberman, V. Peddu, H. Xie, L. Shrestha, M. L. Huang, M. C. Mears, M. N. Cajimat, D. A. Bente, P. Y. Shi, F. Bovier, and P. Roychoudhury, PLoS Biol. 18(9), (2020).

[11] M. Letko, A. Marzi and V. Munster, Nature microbiology 5(4), 562-569 (2020)

[12] K. A. Pastick, E. C. Okafor, F. Wang, S. M. Lofgren, C. P. Skipper, M. R. Nicol, M. F. Pullen, R. Rajasingham,

[13] E. G. McDonald, T. C. Lee, I. S. Schwartz, L. E. Kelly, S. A. Lother, O. Mitjà, E. Letang, M. Abassi and D. R. Boulware, Open Forum Infect. Dis. 7(4), 1-9 (2020).

[14] J. M. Sanders, M. L. Monogue, T. Z. Jodlowski and J. B. Cutrell, JAMA - J. Am. Med. Assoc. 323(18), 1824- 1836 (2020).

[15] L. Ang, H. W. Lee, J. Y. Choi, J. Zhang and M. Soo Lee, Integr. Med. Res. 9(2), 100407 (2020).

[16] S. Panyod, C. T. Ho and L. Y. Sheen, Journal of traditional and complementary medicine10(4), 420-7 (2020).

[17] T. M. Fakih and M. L. Dewi, Jurnal Sains Farmasi & Klinis 7(1), 76-82 (2020).

[18] B. N. Hmed, H. T. Serria, Z. K. Mounir, Journal of toxicology (2013).

[19] M. Baradaran, A. Jalali, M. N. Soorki, M. Jokar and H. Galehdari, Iran. J. Pharm. Res. 18(2) 720 (2019).

[20] M. Bakail and F. Ochsenbein, Comptes Rendus Chim. (2016).

[21] H. K. Kang, C. Kim, C. H. Seo and Y. Park, Microbiol. 55(1), 1-12 (2017).

[22] E. Lenci and A. Trabocchi, Chem. Soc. Rev. 49(11), 3262-3277 (2020). 20. H. B. Koo and J. Seo, Pept. Sci. 111(5), e24122 (2019).

[23] É. C. G. da Mata, C. B. F. Mourão, M. Rangel and E. F. Schwartz, J. Venom. Anim. Toxins Incl. Trop. Dis. 23,(2017).

[24] C. Dai, Y. Ma, Z. Zhao, R. Zhao, Q. Wang, Y. Wu, Z. Cao and W. Li, Antimicrob. Agents Chemother. 52(11), 3967-3972 (2008).

[25] Q. Li, Z. Zhao, D. Zhou, Y. Chen, W. Hong, L. Cao, J. Yang, Y. Zhang, W. Shi, Z. Cao, Y. Wu, H. Yan and W. Li, Peptides 32(7), 1518-1525 (2011).

[26] Z. Zhao, W. Hong, Z. Zeng, Y. Wu, K. Hu, X. Tian, W. Li and Z. Cao, J. Biol. Chem. 287(36), 30181-30190 (2012).

[27] Y. Chen, L. Cao, M. Zhong, Y. Zhang, C. Han, Q. Li, J. Yang, D. Zhou, W. Shi, B. He, F. Liu, J. Yu, Y. Sun, Y. Cao, Y. Li, W. Li, D. Guo, Z. Cao and H. Yan, PLoS One 7(4), p.e34947 (2012).

[28] S. Kumar, V. K. Maurya, A. K. Prasad, M. L. B. Bhatt and S. K. Saxena, VirusDisease 31(1), 13-21 (2020).

[29] J. Shang, G. Ye, K. Shi, Y. Wan, C. Luo, H. Aihara, Q. Geng, A. Auerbach and F. Li, Nature 581(7807), 221- 224 (2020).

[30] L. C. P. V. Boas, M. L. Campos, R. L. A. Berlanda, N. d. C. Neves and O. L. Franco, Cell. Mol. Life Sci. 76(18) 3525-3542 (2019).

[31] S. Mustafa, H. Balkhy and M. Gabere, Advances in bioinformatics (2019).

[32] S. M. D. Rizvi, S. Shakil and M. Haneef, EXCLI J. 12, 831 (2013).

[33] M. Yousef, T. Abdelkader and K. El-Bahnasy, Ain Shams Eng. J. 10(4), 713-719 (2019).

[34] A. W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green, C. Qin, A. Žídek, A. W. R. Nelson, A. Bridgland, H. Penedones, S. Petersen, K. Simonyan, S. Crossan, P. Kohli, D. T. Jones, D. Silver, K. Kavukcuoglu and D. Hassabis, Nature 577(7792), 706-710 (2020).

[35] T. M. Fakih and M. L. Dewi, J. Farm. Galen. (Galenika J. Pharmacy), 6(2), (2020).

[36] B. Senthilkumar, D. Meshachpaul and R. Rajasekaran, Biochemistry research international, (2016).

[37] S. Das, R. K. Sahoo, P. B. Sahoo, K. V. D. Prakash and D. Bhattacharyay, European Journal of Medicinal Plants 20, 29-33 (2020).

[38] J. Maupetit, P. Derreumaux and P. Tuffery, Nucleic Acids Res. 37(suppl_2), W498- W503 (2009).

[39] Y. Shen, J. Maupetit, P. Derreumaux and P. Tufféry, J. Chem. Theory Comput. 10(10), 4745-4758 (2014).

[40] P. Thévenet, Y. Shen, J. Maupetit, F. Guyon, P. Derreumaux and P. Tufféry, Nucleic Acids Res. 40(W1), W288- W293 (2012).

[41] Y. Han and P. Král, ACS Nano 14, 5143–7 (2020).

[42] G. Zhang, S. Pomplun, A. R. Loftis, A. Loas and B. L. Pentelute, bioRxiv (2020).

Download
HTML
Cite
Share
statistics

246 Abstract Views

194 PDF Downloads